

Outcomes by BMI in the STRIVE Phase 2 Trial of Once-Weekly Rezafungin for Treatment of Candidemia and Invasive Candidiasis Compared with Caspofungin

J.A. VAZQUEZ¹, S. FLANAGAN², P.G. PAPPAS³, G.R. THOMPSON III⁴, T. SANDISON², P.M. HONORE⁵

¹Medical College of Georgia at Augusta University, Augusta, Georgia, USA; ²Cidara Therapeutics, Inc., San Diego, CA, USA; ³University of Alabama, Birmingham; ⁴University of California-Davis, Davis, California, USA; ⁵CHU Brugmann University Hospital, Brussels, Belgium

INTRODUCTION

- Body size is an important variable of drug exposure
- Pharmacokinetic (PK) models suggest size-based adjustments to achieve target drug exposure
- Rezafungin is a novel echinocandin with a distinctive PK profile (long half-life, extensive tissue distribution, and front-loaded drug exposure) that allow for once-weekly dosing and efficacy^{2,3}
- Rezafungin is currently in Phase 3 development for treatment of candidemia and invasive candidiasis (IC) [ReSTORE; NCT03667690] and for prevention of invasive fungal disease caused by *Candida*, *Aspergillus*, and *Pneumocystis* in blood and marrow transplant recipients [ReSPECT; NCT04368559]

OBJECTIVES

To evaluate outcomes based on patient body mass index (BMI) in a subanalysis of the Phase 2 STRIVE trial of rezafungin in the treatment of candidemia and/or IC [NCT02734862] compared with caspofungin (Fig. 1)^{4,5}

Figure 1. Treatment Groups of the Phase 2 STRIVE Trial

Group	Dose Regimen	Dose Schedule				
RZF Group 1	IV RZF 400 mg QWk	On Days 1 and 8				
RZF Group 2	IV RZF 400 mg on Week 1, followed by 200 mg QWk ^a	Optional dose(s) on Day 15 (and on Day 22 for IC)				
CAS	IV CAS 70 mg on Day 1, followed by 50 mg QD (with optional step-down to oral fluconazole)	QD for up to 21 days for candidemia or 28 days for IC ± candidemia				

^aRezafungin dosing regimen in Phase 3.

CAS=caspofungin; RZF-rezafungin; QD=once daily; QWk=once weekly

METHODS

Data were stratified by BMI categories (<30 kg/m² and ≥30 kg/m²) and assessed for

- Safety: treatment-emergent adverse events [TEAEs]
- **Efficacy**: overall response [resolution of clinical signs of infection and mycological eradication], mycological response, and investigator assessment of clinical response
- PK: area under the curve [AUC] from RZF-treated patients in the first part of the trial with PK data available for analysis

RESULTS

Mean BMI Values

 Rezafungin Group 1, 26.9 kg/m²; rezafungin Group 2 and caspofungin arms, 26.8 kg/m²

Safety

• TEAEs rates showed no concerning trends (Table 1)

Efficacy

• Outcomes by BMI categories were similar (Table 2)

PK

AUC ranges by BMI overlapped (Fig. 2). Mean ± SD AUC was ~20% lower for the higher BMI category
 (615 ± 104 vs 741 ± 194 μg•h/mL, respectively)

Figure 2. Rezafungin AUC Following 400-mg Dose at Week 1

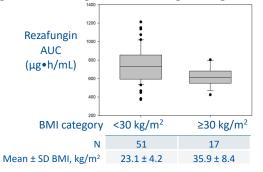


Table 1. TEAEs by BMI Category

	n (%) [Safety Population]							
	BMI <30 kg/m ²			BMI ≥30 kg/m²				
	RZF	RZF		RZF	RZF			
TEAE	Grp 1 N=59	Grp 2 N=37	CAS N=51	Grp 1 N=21	Grp 2 N=15	CAS N=17		
At least 1 TEAE	51 (86.4)	33 (89.2)	42 (82.4)	19 (90.5)	15 (100)	13 (76.5)		
Study drug- related TEAE	4 (6.8)	5 (13.5)	6 (11.8)	3 (14.3)	1 (6.7)	3 (17.6)		
TEAE leading to study drug discontinuation	4 (6.8)	1 (2.7)	4 (7.8)	2 (9.5)	0	0		

Table 2. Efficacy Outcomes by BMI Category

	n (%) [mITT Population]							
	BMI <30 kg/m²			BMI ≥30 kg/m²				
Outcomes at Day 14	RZF Grp 1 N=57	RZF Grp 2 N=34	CAS N=48	RZF Grp 1 N=18	RZF Grp 2 N=11	CAS N=13		
Overall	34	26	32	11	8	9		
Response	(59.6)	(76.5)	(66.7)	(61.1)	(72.7)	(69.2)		
Mycological	37	26	33	12	8	9		
Response	(64.9)	(76.5)	(68.8)	(66.7)	(72.7)	(69.2)		
Investigator Assessment of Clinical Cure	40	28	33	12	8	10		
	(70.2)	(82.4)	(68.8)	(66.7)	(72.7)	(76.9)		

CONCLUSIONS

- Rezafungin safety, efficacy, and PK in STRIVE was consistent across BMI categories
- These results suggest that rezafungin dose adjustments in obese patients are not necessary
- These findings contribute to the evaluation of rezafungin in a range of patient populations and its further development

REFERENCES

- 1. Pea F and RE Lewis. *J Antimicrob Chemother*. 2018;73(suppl_1):i33-i43.
- 2. Sandison T, et al. *Antimicrob Agents Chemother*. 2017;61(2):e01627-16.
- 3. Lakota EA, et al. *Antimicrob Agents Chemother*. 2017;61(11):e00758-17.
- 4. Thompson GR, et al. *Clin Infect Dis*. 2020. doi: 10.1093/cid/ciaa1380.
- 5. Vazquez JA, et al. *Open Forum Infect Dis.* 2020, in press.

CONTACT

Prof. Patrick M. Honore, MD, PhD, FCCM patrick.honore@chu-brugmann.be

ACKNOWLEDGMENTS

STRIVE was funded by Cidara Therapeutics. Editorial support was provided by T. Chung (Scribant Medical) and funded by Cidara.