

EFFECT OF MODERATE HEPATIC IMPAIRMENT ON THE SAFETY AND PHARMACOKINETICS OF REZAFUNGIN

Voon Ong, Taylor Sandison, Rebeca Melara, Thomas Marbury, Jade Huguet, Alena Jandourek, and Shawn Flanagan

Shawn D. Flanagan, PhD Cidara Therapeutics, Inc.

#CCC50 Society of Critical Ca

Acknowledgments/Disclosures:

This study was supported by Cidara Therapeutics and MundiPharma.

The study sponsors had a role in the trial design and in the decision to submit these data for presentation; the study sponsors did not have a role in data collection and analysis.

VO, TS, and SF are employees and shareholders of Cidara, and AJ is a consultant of Cidara.

RM and JH are employees of Altasciences.

TM is an employee and equity owner of Orlando Clinical Research Center.

Editorial support was provided by T. Chung (Scribant Medical) and funded by Cidara Therapeutics.

Introduction - Rezafungin

- Novel echinocandin antifungal that inhibits the synthesis of 1,3-β-D-glucan
- In Phase 3 development for treatment candidemia and invasive candidiasis and for prevention of IFD caused by *Candida* and *Aspergillus* spp. and *Pneumocystis jirovecii*

Structural modification designed to yield improved chemical & biological properties

- Mass balance studies have demonstrated that elimination of rezafungin is primarily in the feces as unchanged rezafungin
- An open-label, single-dose study was conducted to investigate the safety, tolerability, and PK of rezafungin in subjects with hepatic impairment and healthy subjects

IFD=invasive fungal disease; PK=pharmacokinetics.

#CCC50 Society of Critical Care N

REZAFUNGIN

Study Design

• Open-label study to investigate the safety, tolerability, and PK of rezafungin

Subjects	Ν	Treatment	
Moderate hepatic impairment (Child-Pugh Class B)	8	Single rezafungin 400-mg, 1-hr IV	*matched for age (within ± 10 years of mean for hepatic impaired group); sex (similar M:F ratios); and BMI (within ± 20% of mean for hepatic
Normal hepatic function*	8	infusion	impaired group)

Plasma Sampling	Collection Schedule				
Rezafungin PK	at end of infusion and 1.5, 3, 6, 8, 12, 24, 48, 96, 168, and 336 h post-dose				
Rezafungin protein binding	prior to dosing (spiked), at 45 min post start of infusion, and at 72 h post infusion				

 Vital signs, physical examinations, 12-lead ECGs, clinical laboratory assessments, AEs, and concomitant medication usage were evaluated for all subjects through the Day 32 Follow-up visit

AE=adverse event; BMI=body mass index; ECG=electrocardigram.

#CCC50

Results

• Sixteen subjects (4 male and 4 females/group) were enrolled and completed the study

Results

Plasma Rezafungin PK in Subjects with Moderate Hepatic Impairment or Normal Hepatic Function After a Single Dose of IV Rezafungin 400 mg

Group	Statistic	C _{max} (µg/mL)	t _{max} a (h)	AUC _{0-∞} (µg∙h/mL)	t _{1/2} (h)	CL (L/h)	V _z (L)
Moderate	Mean	17.9	1	1210	110.27	0.353	55.1
Hepatic Impairment	SD	4.23	(1.00-1.00)	329	11.81	0.0919	10.8
Normal	Mean	20.6	1	1780	123.1	0.237	42.3
Function	SD	5.88	(1.00-1.50)	456	18.91	0.0559	12.9

N=8 per group. ^aMedian (Min – Max) are reported for t_{max}

Results

Plasma Rezafungin Unbound C_{max} and $AUC_{0-\infty}$ in Subjects with Moderate Hepatic Impairment or Normal Hepatic Function After a Single Dose of IV Rezafungin 400 mg

Results- Safety

Treatment Emergent AE Severity in Subjects with Moderate Hepatic Impairment or Normal Hepatic Function After a Single Dose of IV Rezafungin 400 mg

Adverse Event ^a	Moderate Hepatic Impaired N=8 n (%)			Normal Hepatic Function N = 8 n (%)				
	Adverse Event Severity							
	Mild	Moderate	Severe	Mild	Moderate	Severe		
At least one TEAE	3 (37.5%)	0	0	1 (12.5%)	0	0		
Nausea	1 (12.5%)	0	0	0	0	0		
Headache	1 (12.5%)	0	0	0	0	0		
Pain	1 (12.5%)	0	0	0	0	0		
Infusion site extravasation	1 (12.5%)	0	0	1 (12.5%)	0	0		

^aAdverse events are coded using MedDRA version 22.1

AE=adverse event; TEAE=treatment-emergent AE.

#CCC50

Conclusions

- Systemic exposure of rezafungin, though modestly reduced in subjects with moderate hepatic impairment, remained within the range observed in subjects with normal hepatic function
- Importantly, these minor differences are not indicative of reduced drug clearance that can be associated with hepatic impairment and are likely to reflect variability between small groups of subjects
- This study demonstrated that dose adjustment of rezafungin is not warranted in subjects with moderate hepatic impairment, and that it was safe to study subjects with severe hepatic impairment (ongoing)
- Rezafungin was safe and well tolerated in subjects with moderate hepatic impairment

