

# ISHAM Asia 2021 August 6-8, 2021

7/27/2021







## Rezafungin: a Novel, Once-weekly Echinocandin in Phase 3 Development for Treatment and Prevention of Invasive Fungal Disease

Taylor Sandison, MD, MPH

Chief Medical Officer Cidara Therapeutics, Inc.

## **Presenter Disclosures**

• Employee and shareholder of Cidara Therapeutics, Inc.

### What's Changed for Systemic Fungal Infections in the Past 20 Years?

| 2001                              |                                                                                                                                                                                                                                                               |                                                                                                                                                                                 |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clinical Landscape <sup>1-3</sup> |                                                                                                                                                                                                                                                               | Today                                                                                                                                                                           |
| Evolving epidemiology             | Rising predominance of non- <i>albicans Candida</i><br>Increasing MICs<br>Resistance - <i>FKS</i> mutations, pan-azole resistance<br>New threat: <i>Candida auris</i>                                                                                         |                                                                                                                                                                                 |
| Complexity of Care                | Older patient population<br>Improved outcomes and survival<br>Longer periods of neutropenia<br>Drug—drug interactions (CYP family)<br>Therapeutic drug monitoring needs<br>Evidence of inadequate drug exposure<br>in the critically ill, special populations | <ul> <li>Increased risk of IFI</li> <li>Tidal wave of novel<br/>chemotherapeutics<br/>(midostaurin, vincristine,<br/>venetoclax, nilotinib,<br/>ibrutinib, and more)</li> </ul> |

| 2001                                   |                                                                                                                                                                                                                                                               |                                                                                                                          |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Clinical Landscape <sup>1-3</sup>      |                                                                                                                                                                                                                                                               | Today                                                                                                                    |
| Evolving epidemiology                  | Rising predominance of non- <i>albicans Candida</i><br>Increasing MICs<br>Resistance - <i>FKS</i> mutations, pan-azole resistance<br>New threat: <i>Candida auris</i>                                                                                         |                                                                                                                          |
| Complexity of Care                     | Older patient population<br>Improved outcomes and survival<br>Longer periods of neutropenia<br>Drug—drug interactions (CYP family)<br>Therapeutic drug monitoring needs<br>Evidence of inadequate drug exposure<br>in the critically ill, special populations | Tidal wave of novel<br>chemotherapeutics<br>(midostaurin, vincristine,<br>venetoclax, nilotinib,<br>ibrutinib, and more) |
| Antifundal drug approvals <sup>4</sup> |                                                                                                                                                                                                                                                               |                                                                                                                          |

#### Antifungal drug approvals<sup>4</sup>

Voriconazole Posaconazole Caspofungin Micafungin Anidulafungin

Isavuconazole

1. Bassetti et al. J Antimicrob Chemother. 2018;73:i14-i25. 2. Stemler et al. Ann Hematol. 2020;99:1429-1440. 3. Pea and Lewis. J Antimicrob Chemother. 2018;73:i33-i43. 4. US Food and Drug Administration. Available at <u>https://www.fda.gov/drugs/development-approval-process-drugs/drug-approvals-and-databases</u>. Accessed June 24, 2021.

### **Rezafungin: A Novel Long-Acting Echinocandin With Distinctive Properties in Phase 3**

#### Structural modification increases stability and yields unique chemical & biological properties





| Properties                                     | Evidence                                                         |
|------------------------------------------------|------------------------------------------------------------------|
| Long-acting PK                                 | Once-weekly dosing as in ongoing Phase 3 clinical trials*        |
| Front-loaded plasma drug exposure              | Efficacy: Shorter time to negative blood culture in Phase 2      |
| Broad spectrum activity                        | In vivo efficacy vs. Candida, Aspergillus, and Pneumocystis spp. |
| Observed absence of toxic degradation products | Safety: lack of hepatotoxicity                                   |
| No DDIs and favorable hepatic and renal safety | Compatibility with other medications                             |

\* ReSTORE: 1st line treatment of candidemia and/or invasive candidiasis ReSPECT: 1st line prophylaxis for *Candida, Aspergillus,* and *Pneumocystis* spp., in allogeneic blood and marrow transplant patients

## **Rezafungin Targets the Fungal Cell Wall**



Image adapted from Diamond RD, ed. Atlas of Infectious Diseases: Fungal Infections. Copyright 2000 Springer Science+Business Media New York. Rezafungin inhibits production of 1,3-β-D-glucan<sup>2</sup>

Increased permeability of the cell wall causes osmotic imbalance<sup>2</sup>

Fungal cell lysis occurs<sup>2</sup>

• Fungicidal against *Candida* spp.

- Fungistatic against Aspergillus spp.<sup>2</sup>
- Active against Pneumocystis spp.<sup>3,4</sup>

Diamond RD, ed. Atlas of Infectious Diseases: Fungal Infections. 1st ed. Current Medicine Group; 2000. 2. Patil, et al. J Pharm Pharmacol. 2017 Dec;69(12):1635-1660.
 Cushion, et al. ASH 2019; Orlando, Florida. 4. Sandison, et al. ICHS 2021.

#### In Vitro Activity Comparable With Current Echinocandins

|               | MIC <sub>90</sub> (μg/mL) <sup>1-3*</sup>   |                                          |                                            |                                          |                                          |                                         |                                              |                                                  |                                                |                                         |
|---------------|---------------------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------------------|--------------------------------------------------|------------------------------------------------|-----------------------------------------|
|               | <i>C. albicans</i><br>(n=835) <sup>2†</sup> | <i>C. glabrata</i> (n=374) <sup>2†</sup> | <i>C. tropicalis</i> (n=196) <sup>2†</sup> | <i>C. krusei</i><br>(n=77) <sup>2†</sup> | C. parapsilosis<br>(n=329) <sup>2†</sup> | <i>C. kefyr</i><br>(n=52) <sup>3‡</sup> | <i>C. lusitaniae</i><br>(n=46) <sup>3‡</sup> | <i>C. guilliermondii</i><br>(n=27) <sup>3‡</sup> | <i>C. dubliniensis</i><br>(n=22) <sup>3‡</sup> | <i>C. auris</i><br>(n=19) <sup>3‡</sup> |
| Rezafungin    | 0.06                                        | 0.12                                     | 0.06                                       | 0.06                                     | 2                                        | 0.12                                    | 0.25                                         | 1                                                | 0.06                                           | 0.25                                    |
| Anidulafungin | 0.03                                        | 0.12                                     | 0.06                                       | 0.12                                     | 2                                        | 0.06                                    | 0.06                                         | 2                                                | 0.03                                           | 0.25                                    |
| Caspofungin   | 0.03                                        | 0.06                                     | 0.06                                       | 0.25                                     | 0.5                                      | 0.5                                     | 1                                            | 1                                                | 0.25                                           | 1                                       |
| Micafungin    | 0.03                                        | 0.03                                     | 0.06                                       | 0.12                                     | 1                                        | 0.12                                    | 0.25                                         | 2                                                | 0.03                                           | 0.5                                     |

\*CLSI broth microdilution methodology was employed for MIC determination (M27-A3).1-3

+Clinical isolates collected internationally in the JMI Laboratories SENTRY Antimicrobial Surveillance Program (2016-2018).2

\*Clinical isolates collected in Hungary (2005-2018), except for C. auris obtained from the National Mycology Reference Laboratory (Bristol, UK), tested as part of a retrospective study.3 CLSI, Clinical and Laboratory Standards Institute; MIC, minimal inhibitory concentration.

1. Berkow, et al. Diagn Microbio Infect Dis. 2018;90:196-197. 2. Pfaller, et al. Antimicrob Agents Chemother. 2020;pii: AAC.00099-20. 3. Toth, et al. J Antimicrob Chemother. 2019;74:3505-3510.

#### In Vitro Activity Includes Azole-Resistant Strains and Cryptic Species

|               | MEC <sub>90</sub> /MIC <sub>90</sub>  | (µg/mL)*                                 |              | MEC <sub>90</sub> /MIC <sub>90</sub> (μg/mL) <sup>*</sup>   |                                         |                                        |  |
|---------------|---------------------------------------|------------------------------------------|--------------|-------------------------------------------------------------|-----------------------------------------|----------------------------------------|--|
|               | A. fumigatus<br>(n=183) <sup>1†</sup> | <i>A. flavus</i><br>(n=45) <sup>1†</sup> |              | Azole-resistant<br><i>A. fumigatus</i> (n=31) <sup>2‡</sup> | <i>A. lentulus</i> (n=11) <sup>2‡</sup> | A. calidoustus<br>(n=11) <sup>2‡</sup> |  |
| Rezafungin    | 0.03                                  | 0.015                                    | Rezafungin   | 0.12                                                        | ≤0.015                                  | 0.06                                   |  |
| Anidulafungin | 0.03                                  | 0.015                                    | Posaconazole | 4                                                           | 0.5                                     | 4                                      |  |
| Caspofungin   | 0.03                                  | 0.03                                     | Voriconazole | >16                                                         | 8                                       | 4                                      |  |
| Micafungin    | 0.015                                 | 0.03                                     | Micafungin   | 0.06                                                        | ≤0.015                                  | 0.03                                   |  |

\*CLSI broth microdilution methodology was employed for MEC and MIC determination (M38-A2).<sup>2</sup>

<sup>†</sup>Clinical isolates collected internationally in the JMI Laboratories SENTRY Antimicrobial Surveillance Program (2016-2018).<sup>1</sup>

<sup>‡</sup>Clinical isolates collected in the US and resistance genotypes confirmed by DNA sequence analysis (CYP51A only, n=13; TR<sub>34</sub>/L98H, n=2; TR<sub>46</sub>/Y121F/T289A, n=2; resistant/no CYP51A mutation, n=6; resistant/CYP51A status unknown, n=8).<sup>3</sup>

CLSI, Clinical and Laboratory Standards Institute; CYP, cytochrome P450; MEC, minimal effective concentration; MIC, minimal inhibitory concentration.

1. Pfaller, et al. Antimicrob Agents Chemother. 2020;pii: AAC.00099-20. 2. Wiederhold, et al. J Antimicrob Chemother. 2018b;73:3063-3067.



## **Rezafungin:** *In Vivo* Efficacy

# Efficacy of Rezafungin in Prophylactic Mouse Models of Invasive Candidiasis, Aspergillosis, and *Pneumocystis* Pneumonia

Lynn Miesel,<sup>a</sup> Melanie T. Cushion,<sup>b,c</sup> Alan Ashbaugh,<sup>b,c</sup> Santiago R. Lopez,<sup>d</sup> <sup>(D)</sup> Voon Ong<sup>e</sup>

Survival – A. fumigatus (ATCC 13073) 1.85x10<sup>4</sup> on Day 0



100% prophylaxis efficacy against A. fumigatus at human equivalent doses (10 and 20 mg/kg)<sup>1</sup>

Prophylaxis efficacy against *Pneumocystis* comparable to TMP-SMX (standard of care) at human equivalent doses

\*p<0.05 vs. control.</li>
 C/S, control steroid; CPM, cyclophosphamide; LOD, limit of detection; TMP/SMX, trimethoprim-sulfamethoxazole.
 Miesel, et al. Antimicrob Agents Chemother. 2021;65:e01992-20.

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally

Kidney Tissue Fungal Burden – *Pneumocystis murina* 2x10<sup>6</sup> on Day 0



## **Rezafungin: PK/PD**

### **Rezafungin High Exposure for Sustained Fungicidal Activity**

#### **Exposure Shape Matters for Antifungal Efficacy**

High drug exposure following once-weekly dosing resulted in greater fungal killing than divided doses



# Simulated dose fractionation of rezafungin in healthy mice, total dose 2 mg/kg

#### Fungal burden in neutropenic mice following Candida albicans infection and 2 mg/kg rezafungin

Single Dose

**Twice Weekly** 

Single Dose

Vehicle

Daily

Daily

Twice Weekly

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally

1. Lakota, et al. Antimicrob Agents Chemother. 2017;61:e00758-17.

# Rezafungin PK/PD Target Attainment by MIC Associated With Net Fungal Stasis and CFU Reductions From Baseline

#### Percent Probability Against Worldwide C. albicans and C. glabrata MIC Distributions



#### **Study Design**

- Population PK model, non-clinical PK/PD targets, and *in vitro* surveillance data used to simulate probabilities of target attainment
- Simulated administration of rezafungin 400 mg
- Highest rezafungin MIC values in *fks* mutants observed were 0.25 mg/L for *C. albicans* and 2 mg/L for *C. glabrata*

Rezafungin 400 mg simulated to achieve high percent probabilities of PK/PD target attainment, providing efficacy for majority of patients

Single dose of rezafungin 400 mg simulated to reduce fungal burden, even in some *fks* mutant *Candida* isolates

CFU, colony-forming units; MIC, minimal inhibitory concentration; PD, pharmacodynamic; PK, pharmacokinetic. 1. Bader, et al. Antimicrob Agents Chemother. 2018;62:e02614-17.

14

### **Rezafungin Demonstrates High Probability of PK/PD Target Attainment**

#### Percent Probability Against Candida albicans and C. glabrata 1 Week After Dose Based on Non-Clinical PK/PD Targets

|                | C. albicans <sup>1,2</sup> |                    |             |            |                |            | C. glabra     | 1 <b>ta</b> <sup>1,2</sup> |            |
|----------------|----------------------------|--------------------|-------------|------------|----------------|------------|---------------|----------------------------|------------|
| MIC<br>(µg/mL) | Micafungin                 | Anidulafungin      | Caspofungin | Rezafungin | MIC<br>(µg/mL) | Micafungin | Anidulafungin | Caspofungin                | Rezafungin |
| 0.008          | 99.4                       | 100 <sup>a,b</sup> | 100         | 100        | 0.008          | 100        | 100           | 100                        | 100        |
| 0.015          | 71.2                       | 99.1               | 100         | 100        | 0.015          | 100        | 100           | 100                        | 100        |
| 0.03           | 10.1                       | 52.7               | 100         | 100        | 0.03           | 97.5       | 99.2          | 100                        | 100        |
| 0.06           | 0.1                        | 0.90               | 97.9        | 100        | 0.06           | 49.9       | 54.3          | 100                        | 100        |
| 0.12           | 0                          | 0                  | 76.7        | 100        | 0.12           | 3.40       | 0.95          | 100                        | 100        |
| 0.25           | 0                          | 0                  | 35.7        | 100        | 0.25           | 0          | 0             | 100                        | 100        |
| 0.5            | 0                          | 0                  | 12.1        | 100        | 0.5            | 0          | 0             | 97.0                       | 100        |
| 1              | 0                          | 0                  | 4.4         | 76.5       | 1              | 0          | 0             | 73.2                       | 100        |
| 2              | 0                          | 0                  | 1.35        | 1.00       | 2              | 0          | 0             | 33.9                       | 100        |
| 4              | 0                          | 0                  | 0.25        | 0          | 4              | 0          | 0             | 11.3                       | 100        |
| 8              | 0                          | 0                  | 0.05        | 0          | 8              | 0          | 0             | 4.35                       | 100        |

Shading reflects relative probability of PK/PD target attainment 1 week after dose (stasis).

#### Rezafungin high probability of PK/PD target attainment against *C. albicans* and *C. glabrata* in Monte Carlo simulations

#### **Rat PK Models**



Uniform tissue distribution across liver, kidney, lungs, and spleen<sup>1</sup>

#### Similar half-life/elimination in organs<sup>2</sup>



AUC, area under the curve.

1. Ong, et al. Antimicrob Agents Chemother. 2017;61:e01626-16. 2. Ong, et al. Biol Blood Marrow Transplant. 2018;24:S291–S459.

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally

16

#### Drug Concentrations in Plasma and ELF<sup>1</sup>



ELF, epithelial lining fluid; MEC, minimal effective concentration.

Ong, et al. HTIDE, 2018; poster.

#### Study Design

- Study drugs administered IP as a single dose in CD-1 mice
  - Micafungin 5 mg/kg (≈ human dose of 100 mg)
  - Rezafungin 20 mg/kg (≈ human dose of 400 mg)
- Comparable levels in humans expected after 1 week due to rezafungin plasma half-life (133 h in human, 21 h in mouse)

Micafungin distribution into mouse ELF is similar to that observed in humans, suggesting that this model may be predictive of distribution in humans

Rezafungin concentrations >20-fold higher than  $MEC_{90}$ (0.015 µg/mL) against *Aspergillus fumigatus* and *A. flavus* in plasma (3 µg/mL) and ELF (4 µg/mL) after 3 days

## High levels and long duration in ELF reinforce potential for rezafungin efficacy with once-weekly dosing

#### In vivo Comparison of Drug Penetration in the Liver



#### **Study Design**

- CD-1 mice, no immunosuppression
- *C. albicans* (SC5314), 1x10<sup>7</sup> on Day 0
- Study drugs administered on Day 3 post-infection
  - Micafungin 5 mg/kg 2-3 daily doses (5 mg/kg ≈ human dose of 100 mg)
  - Rezafungin 20 mg/kg single dose (20 mg/kg ≈ human dose of 400 mg)
- MALDI-MSI to assess drug penetration at infection site

- Multiple doses of micafungin did not reach tissue drug levels achieved with single dose of rezafungin
- Rezafungin accumulated in necrotic areas of each lesion at 48 and 72 hours

GMS, Gomori methenamine silver; H&E, hematoxylin and eosin; MALDI-MSI, matrix-assisted laser desorption ionization mass spectrometry imaging.

1. Zhao, et al. Antimicrob Agents Chemother. 2017;61(10).

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration required

### **Rezafungin Tissue Penetration With a Single Dose (Zhao et al, 2017)**

#### Drug Levels of Rezafungin and Micafungin vs Mutant Prevention Concentration<sup>1</sup>



#### Rezafungin Single Dose (20 mg/kg)

#### Study Design

- CD-1 mice, no immunosuppression
- C. albicans (SC5314), 1x10<sup>7</sup> on Day 0
- Study drugs administered on Day 3 post-infection
  - Micafungin 5 mg/kg 2-3 daily doses  $(5 \text{ mg/kg} \approx \text{human dose of 100 mg})$
  - Rezafungin 20 mg/kg single dose  $(20 \text{ mg/kg} \approx \text{human dose of } 400 \text{ mg})$
- Tissue drug levels measured at infection site. in lesions and in uninvolved/surrounding tissues

#### Rezafungin drug levels above the MPC for C. albicans and C. glabrata

#### \*p<0.001

19

MALDI-MSI, matrix-assisted laser desorption ionization mass spectrometry imaging 1. Zhao, et al. Antimicrob Agents Chemother, 2017;61(10), 2. Zhao, et al. Cell Microbio, 2016;18(9)



# **Rezafungin: Phase 1 Data**

#### **Evidence of Rezafungin Safety and Consistent Drug Exposures Across Populations**

| Pharmacokinetics              | Consistent rezafungin exposures observed, including in a wide range of renal function                                           |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Hepatic Impairment            | No clinically relevant differences in mean exposure observed between moderate or severe hepatic impairment and healthy controls |
| Drug-Drug Interaction Studies | No notable drug interactions<br>No dose adjustments with rezafungin coadministration                                            |
| QT Interval Study             | Lack of effect on QT interval in healthy adults                                                                                 |

#### Long Plasma Half-Life and Minimal Metabolism Following IV Administration



Rezafungin minimally metabolized and mainly excreted unchanged in feces No dose adjustment expected for renal impairment

#### Study Design<sup>1</sup>

- Healthy human subjects, N=9
- Single 400 mg dose of radiolabeled rezafungin administered IV
- Collected blood, urine, and fecal samples over 60 days

Rezafungin accounted for ~77% total radiocarbon AUC<sup>1</sup>

Metabolites accounted for <10% total plasma radioactivity AUC exposure<sup>1</sup>

Consistent rezafungin exposures observed over a wide range of renal function<sup>2</sup>

22

## **Rezafungin in Renal and Hepatic Impairment**



Renal impairment did not appear to affect rezafungin safety or efficacy in STRIVE

Differences in mean exposure in moderate or severe HI and healthy controls were not clinically relevant

#### **Details of Analyses**

- Exposure (C<sub>max</sub>) following rezafungin 400 mg
  - By Renal Function: from subjects in STRIVE, estimated using a population PK model and Bayesian estimation
  - By Hepatic Function: from subjects with moderate or severe hepatic impairment (HI; Child-Pugh class B or C) and healthy matched controls in an open-label study

Consistent RZF exposures over a wide range of renal function were observed in STRIVE data

Mean RZF exposure in moderate or severe HI was modestly reduced (up to ~30% lower) vs matched healthy subjects

Of 9 AEs in 7 subjects, 1 was considered related to rezafungin (mild headache in subject with moderate HI)

\*Geometric Means with 95% confidence intervals.

Flanagan et al, SCCM 2020; Flanagan et a ICHS 2021; Cidara Therapeutics, Data on file (submitted, TIMM 2021)

### **Drug Interaction Study In Healthy Adults**

| DRUG         | POSSIBLE MECHANISM(S) | OBSERVATIONS                                                                    | SUGGESTED ACTION  |
|--------------|-----------------------|---------------------------------------------------------------------------------|-------------------|
| Tacrolimus   | CYP3A4, P-gp          | $\leftrightarrow C_{max}$ $\downarrow AUC ~15\%$                                | No change in dose |
| Repaglinide  | CYP2C8, OATP          | $\leftrightarrow C_{max}$ $\uparrow AUC ~15\%$                                  | No change in dose |
| Metformin    | OCT, MATEs            | $ \begin{array}{l} \leftrightarrow C_{max} \\ \leftrightarrow AUC \end{array} $ | No change in dose |
| Rosuvastatin | BCRP, OATP            | 个 C <sub>max</sub> ~12%<br>个 AUC ~15%                                           | No change in dose |
| Pitavastatin | ΟΑΤΡ                  | $ \begin{array}{l} \leftrightarrow C_{max} \\ \leftrightarrow AUC \end{array} $ | No change in dose |
| Caffeine     | CYP1A2                | $\begin{array}{l} \leftrightarrow C_{max} \\ \leftrightarrow AUC \end{array}$   | No change in dose |
| Efavirenz    | CYP2B6                | $\begin{array}{l} \leftrightarrow C_{max} \\ \leftrightarrow AUC \end{array}$   | No change in dose |
| Midazolam    | СҮРЗА                 | $\begin{array}{c} \leftrightarrow C_{max} \\ \leftrightarrow AUC \end{array}$   | No change in dose |
| Digoxin      | CYP2B6                | $\begin{array}{l} \leftrightarrow C_{max} \\ \leftrightarrow AUC \end{array}$   | No change in dose |

Single-center, open-label trial (N=26). Substrate drugs dosed alone for 3 weeks, then with rezafungin for 3 weeks.<sup>1</sup>

#### No dose adjustments required for these commonly used drugs when rezafungin is co-administered

AUC, area under the curve; BCRP, breast cancer resistance protein; C<sub>max</sub>, maximum plasma concentration; CYP, cytochrome P450; MATEs, multidrug and toxin extrusion protein; OATP, organic anion transporting polypeptides; OCT, organic cation transporter; P-gp, P-glycoprotein.

1. Ong, et al. EBMT19 2019; poster B196.



## **Rezafungin Phase 2 Treatment Trial**

**STR**<sup>V</sup>E

#### **Trial Not Powered for Inferential Statistical Analysis**

#### mITT N=1831



\*N values of the mITT population.

26

IC, invasive candidiasis; ITT, intent-to-treat; mITT, microbiological intent-to-treat

1. Thompson, et al. Clin Infect Dis. 2020, ciaa1380, https://doi.org/10.1093/cid/ciaa1380.

27

## Summary of Rezafungin Efficacy (mITT Population)<sup>1</sup>



#### Rezafungin demonstrated similar efficacy vs. caspofungin

EMA, European Medicines Agency; FDA, Food and Drug Administration; mITT, microbiological intent-to-treat; PI, principal investigator. **1.** Thompson et al. *Clin Infect Dis.* 2020, ciaa1380, https://doi.org/10.1093/cid/ciaa1380.

### Efficacy Outcomes at Day 5 (mITT Population)<sup>1</sup>



Rezafungin 400 mg/400 mg weekly (N=76)

- Rezafungin 400 mg/200 mg weekly (N=46)
- Rezafungin Pooled (N=122)
- Caspofungin 70 mg/50 mg daily (N=61)

Note initial dose of 400 mg in both rezafungin-treated arms.

#### Rezafungin efficacy compared with caspofungin evident by day 5

mITT, microbiological intention-to-treat.
 Thompson, et al. *Clin Infect Dis*. 2020, ciaa1380, https://doi.org/10.1093/cid/ciaa1380.

28

#### Phase 2 Candida Treatment

# **STR**<sup>V</sup>E

## Time to Negative Blood Culture<sup>1</sup>



Pooled rezafungin vs Caspofungin (p=0.0016 posthoc log-rank test)

• Rezafungin efficacy early in treatment course suggests clinical effect of high, front-loaded plasma drug exposure

mITT, microbiological intention-to-treat. **1.** Thompson, et al. *Clin Infect Dis.* 2020, ciaa1380, https://doi.org/10.1093/cid/ciaa1380.

29

## Time to Negative Blood Culture<sup>1</sup>



mITT: All randomized patients who received study drug and had

**Pooled rezafungin** vs **Caspofungin** (*p*=0.0016 posthoc log-rank test)

 Rezafungin efficacy early in treatment course suggests clinical effect of high, front-loaded plasma drug exposure

mITT, microbiological intention-to-treat.

30

1. Thompson, et al. Clin Infect Dis. 2020, ciaa1380, https://doi.org/10.1093/cid/ciaa1380.

mITT2: Patients in mITT with positive blood culture within 12h before and 72h after enrollment



#### Pooled rezafungin vs Caspofungin (p<0.0001 posthoc log-rank test)

 More pronounced effect in mITT2 suggests patients with active infection may be more likely to benefit from potential clinical effect of front-loaded exposure

#### Efficacy Endpoints During Initial Days of Treatment (mITT Population – Patients with Candidemia Only)

Day 1

Day 5



Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requiren differ internationally

31

### Time to Negative Blood Culture (mITT Population)<sup>1</sup>



<sup>1.</sup> Data on file from STRIVE Phase 2 clinical trial.

- 2. Data on file. Of patients with confirmed Candida infection (positive blood culture), mITT population (%; n/N).
- 3. STRIVE Phase 2: CID September, 2020.

#### Summary of Adverse Events (Safety Population)<sup>1</sup>

| Adverse Event      | Rezafungin<br>400 mg/400 mg Weekly<br>N=81 | Rezafungin<br>400 mg/200 mg Weekly<br>N=53 | All Rezafungin<br>(Pooled)<br>N=134 | Caspofungin<br>70 mg/50 mg Daily<br>N=68 |
|--------------------|--------------------------------------------|--------------------------------------------|-------------------------------------|------------------------------------------|
|                    |                                            | n (%)                                      | )                                   |                                          |
| ≥1 TEAE            | 71 (87.7)                                  | 49 (92.5)                                  | 120 (89.6)                          | 55 (80.9)                                |
| Severe             | 29 (35.8)                                  | 17 (32.1)                                  | 46 (34.3)                           | 26 (38.2)                                |
| Study drug-related | 7 (8.6)                                    | 6 (11.3)                                   | 13 (9.7)                            | 9 (13.2)                                 |
| Serious AE         | 35 (43.2)                                  | 28 (52.8)                                  | 63 (47.0)                           | 29 (42.6)                                |
| Study drug-related | 1 (1.2)                                    | 1 (1.9)                                    | 2 (1.5)                             | 2 (2.9)                                  |

No concerning trends with rezafungin safety

TEAE, treatment-emergent adverse event. 1. Thompson, et al. *Clin Infect Dis*. 2020, ciaa1380, https://doi.org/10.1093/cid/ciaa1380.

33

#### Treatment-Emergent Adverse Events (≥10%, Safety Population)<sup>1</sup>

| Treatment-emergent<br>Adverse Event | Rezafungin<br>400 mg/400 mg Weekly<br>N=81 | 100 mg/400 mg Weekly 400 mg/200 mg Weekly |           | Caspofungin<br>70 mg/50 mg Daily<br>N=68 |  |  |
|-------------------------------------|--------------------------------------------|-------------------------------------------|-----------|------------------------------------------|--|--|
|                                     | n (%)                                      |                                           |           |                                          |  |  |
| Hypokalemia                         | 13 (16.0)                                  | 9 (17.0)                                  | 22 (16.4) | 9 (13.2)                                 |  |  |
| Diarrhea                            | 7 (8.6)                                    | 11 (20.8)                                 | 18 (13.4) | 10 (14.7)                                |  |  |
| Vomiting                            | 6 (7.4)                                    | 8 (15.1)                                  | 14 (10.4) | 5 (7.4)                                  |  |  |
| Pyrexia                             | 9 (11.1)                                   | 4 (7.5)                                   | 13 (9.7)  | 6 (8.8)                                  |  |  |
| Anemia                              | 6 (7.4)                                    | 7 (13.2)                                  | 13 (9.7)  | 4 (5.9)                                  |  |  |
| Nausea                              | 4 (4.9)                                    | 8 (15.1)                                  | 12 (9.0)  | 6 (8.8)                                  |  |  |
| Abdominal Pain                      | 5 (6.2)                                    | 6 (11.3)                                  | 11 (8.2)  | 5 (7.4)                                  |  |  |
| Septic Shock                        | 9 (11.1)                                   | 1 (1.9)                                   | 10 (7.5)  | 3 (4.4)                                  |  |  |

#### No concerning trends with rezafungin safety

34



#### **Conclusions**<sup>1</sup>

35

Rezafungin 400 mg/200 mg dose demonstrated highest overall response, lowest all-cause mortality, and more rapid clearance of candidemia in STRIVE trial

Rezafungin 400 mg/200 mg dose now in Phase 3 trials

Adverse event data demonstrate the safety of rezafungin and its once-weekly dosing regimen



## **Rezafungin Phase 3 Treatment Trial**





### **Phase 3 Trial Design Mirrors STRIVE Phase 2 Trial** Prospective, randomized, double-blind, international, >100 centers

REZAFUNGIN N=92 in mITT population 400/200 mg

CASPOFUNGIN

70/50 mg

**Optional Oral** 



\*Global Response is defined as Clinical Response (as assessed by the Primary Investigator). Mycological Response and Radiological Response (for qualifying invasive candidiasis patients only).

EMA, European Medicines Agency; FDA, Food and Drug Administration.

1. Clinicaltrials.gov NCT 03667690 accessed 5 Feb 2021.



## **Rezafungin Phase 3 Prophylaxis Trial in Allogeneic BMT**



### **Rezafungin: The Potential For a Simplified Single Drug Paradigm**

#### Antifungal Prophylaxis in Allogeneic Blood and Marrow Transplant Setting<sup>1,2</sup>



39



**Trial Design** 



Re SPECT

80 mg TMP/400 mg SMX QD

\*Patients with acute GVHD can be switched to posaconazole

40

GVHD, graft-versus-host disease; IFD, invasive fungal disease; SMX, sulfamethoxazole; TMP, trimethoprim. 1. Clinicaltrials.gov NCT04368559 accessed 4 Feb 2021. Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirement differ internationally

#### Phase 3, Prospective, Randomized, Double-Blind, International, Multicenter Trial<sup>1</sup>

Weekly

Dose

To evaluate efficacy and safety of rezafungin vs standard of care (azole plus TMP/SMX) against IFD caused by *Aspergillus*, *Candida*, and *Pneumocystis* in allogeneic BMT patients

1º Endpoint:

13

Fungal-free survival at Day 90

12

462 patients enrolled

Follow-up

17



5

## **Rezafungin for Treatment and Prophylaxis**

#### **Unique Properties of a Next-Generation Echinocandin**

Potent and broad-spectrum activity against Candida, Aspergillus, and Pneumocystis
includes C. auris, subset of azole- and echinocandin-resistant isolates, Aspergillus activity includes azole-resistant species

#### Enhanced PK

extended half-life (~130 hours), once-weekly front-loaded dosing, and greater tissue penetration compared with micafungin

- Front-loaded dosing may improve early outcomes, time to negative blood culture, and day 5 outcomes compared with caspofungin
- Safety and DDI profile of the echinocandin class may spare myelosuppression, TDM, hepatic and renal toxicity, non-compliance, and complications of managing/avoiding DDIs
- Dosing and administration once-weekly use inpatient and outpatient may support earlier hospital discharge

## • Phase 2 STRIVE trial demonstrated rezafungin safety and efficacy for 1st line treatment of documented candidemia and/or invasive candidiasis

#### Phase 3 ongoing

- ReSTORE: 1st line treatment of candidemia and/or invasive candidiasis v caspofungin, 2-4 weeks
- ReSPECT: 1st line prophylaxis of *Candida, Aspergillus,* and *Pneumocystis* in alloBMT ± GVHD, vs fluconazole/posaconazole/Bactrim<sup>®</sup>, 90 days