Rezafungin: a Novel, Once-weekly Echinocandin in Phase 3 Development for Treatment and Prevention of Invasive Fungal Disease

Taylor Sandison, MD, MPH

Chief Medical Officer
Cidara Therapeutics, Inc.

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally.
Presenter Disclosures

• Employee and shareholder of Cidara Therapeutics, Inc.
What’s Changed for Systemic Fungal Infections in the Past 20 Years?

Clinical Landscape

Evolving epidemiology
- Rising predominance of non-albicans Candida
- Increasing MICs
- Resistance - FKS mutations, pan-azole resistance
- New threat: Candida auris

Complexity of Care
- Older patient population
- Improved outcomes and survival
- Longer periods of neutropenia
- Drug—drug interactions (CYP family)
- Therapeutic drug monitoring needs
- Evidence of inadequate drug exposure in the critically ill, special populations

Increased risk of IFI

Tidal wave of novel chemotherapeutics (midostaurin, vincristine, venetoclax, nilotinib, ibrutinib, and more…)

What’s Changed for Systemic Fungal Infections in the Past 20 Years?

Clinical Landscape

- **Evolving epidemiology**
 - Rising predominance of non-\textit{albicans} \textit{Candida}
 - Increasing MICs
 - Resistance - \textit{FKS} mutations, pan-azole resistance
 - New threat: \textit{Candida auris}

- **Complexity of Care**
 - Older patient population
 - Improved outcomes and survival
 - Longer periods of neutropenia
 - Drug—drug interactions (CYP family)
 - Therapeutic drug monitoring needs
 - Evidence of inadequate drug exposure in the critically ill, special populations

Antifungal drug approvals

- Voriconazole
- Posaconazole
- Caspofungin
- Micafungin
- Anidulafungin
- Isavuconazole

Rezafungin: A Novel Long-Acting Echinocandin With Distinctive Properties in Phase 3

Structural modification increases stability and yields unique chemical & biological properties

<table>
<thead>
<tr>
<th>Properties</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-acting PK</td>
<td>Once-weekly dosing as in ongoing Phase 3 clinical trials*</td>
</tr>
<tr>
<td>Front-loaded plasma drug exposure</td>
<td>Efficacy: Shorter time to negative blood culture in Phase 2</td>
</tr>
<tr>
<td>Broad spectrum activity</td>
<td>In vivo efficacy vs. Candida, Aspergillus, and Pneumocystis spp.</td>
</tr>
<tr>
<td>Observed absence of toxic degradation products</td>
<td>Safety: lack of hepatotoxicity</td>
</tr>
<tr>
<td>No DDIs and favorable hepatic and renal safety</td>
<td>Compatibility with other medications</td>
</tr>
</tbody>
</table>

* ReSTORE: 1st line treatment of candidemia and/or invasive candidiasis
ReSPECT: 1st line prophylaxis for Candida, Aspergillus, and Pneumocystis spp., in allogeneic blood and marrow transplant patients

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally.
Rezafungin Targets the Fungal Cell Wall

Increased permeability of the cell wall causes osmotic imbalance^2

Rezafungin inhibits production of 1,3-β-D-glucan^2

Fungal cell lysis occurs^2

- Fungicidal against *Candida* spp.
- Fungistatic against *Aspergillus* spp.^2
- Active against *Pneumocystis* spp.^3,^4

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally.
Rezafungin: Potent, Broad-Spectrum Activity Against Candida Species

In Vitro Activity Comparable With Current Echinocandins

<table>
<thead>
<tr>
<th></th>
<th>C. albicans (n=835)</th>
<th>C. glabrata (n=374)</th>
<th>C. tropicalis (n=196)</th>
<th>C. krusei (n=77)</th>
<th>C. parapsilosis (n=329)</th>
<th>C. kefyr (n=52)</th>
<th>C. lusitaniae (n=46)</th>
<th>C. guilliermondii (n=27)</th>
<th>C. dubliniensis (n=22)</th>
<th>C. auris (n=19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rezafungin</td>
<td>0.06</td>
<td>0.12</td>
<td>0.06</td>
<td>0.06</td>
<td>2</td>
<td>0.12</td>
<td>0.25</td>
<td>1</td>
<td>0.06</td>
<td>0.25</td>
</tr>
<tr>
<td>Anidulafungin</td>
<td>0.03</td>
<td>0.12</td>
<td>0.06</td>
<td>0.12</td>
<td>2</td>
<td>0.06</td>
<td>0.06</td>
<td>2</td>
<td>0.03</td>
<td>0.25</td>
</tr>
<tr>
<td>Caspofungin</td>
<td>0.03</td>
<td>0.06</td>
<td>0.25</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>0.25</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Micafungin</td>
<td>0.03</td>
<td>0.03</td>
<td>0.06</td>
<td>0.12</td>
<td>1</td>
<td>0.12</td>
<td>0.25</td>
<td>2</td>
<td>0.03</td>
<td>0.5</td>
</tr>
</tbody>
</table>

MIC₉₀ (µg/mL)¹⁻³

- *CLSI broth microdilution methodology was employed for MIC determination (M27-A3).¹⁻³
- †Clinical isolates collected internationally in the JMI Laboratories SENTRY Antimicrobial Surveillance Program (2016-2018).²
- ‡Clinical isolates collected in Hungary (2005-2018), except for C. auris obtained from the National Mycology Reference Laboratory (Bristol, UK), tested as part of a retrospective study.³

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally.
Rezafungin: Potent Activity Against *Aspergillus* Species

In Vitro Activity Includes Azole-Resistant Strains and Cryptic Species

<table>
<thead>
<tr>
<th></th>
<th>MEC<sub>90</sub>/MIC<sub>90</sub> (µg/mL)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. fumigatus (n=183)<sup>1†</sup></td>
</tr>
<tr>
<td>Rezafungin</td>
<td>0.03</td>
</tr>
<tr>
<td>Anidulafungin</td>
<td>0.03</td>
</tr>
<tr>
<td>Caspofungin</td>
<td>0.03</td>
</tr>
<tr>
<td>Micafungin</td>
<td>0.015</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>MEC<sub>90</sub>/MIC<sub>90</sub> (µg/mL)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Azole-resistant A. fumigatus (n=31)<sup>2‡</sup></td>
</tr>
<tr>
<td>Rezafungin</td>
<td>0.12</td>
</tr>
<tr>
<td>Posaconazole</td>
<td>4</td>
</tr>
<tr>
<td>Voriconazole</td>
<td>>16</td>
</tr>
<tr>
<td>Micafungin</td>
<td>0.06</td>
</tr>
</tbody>
</table>

*CLSI broth microdilution methodology was employed for MEC and MIC determination (M38-A2).*²

¹Clinical isolates collected internationally in the JMI Laboratories SENTRY Antimicrobial Surveillance Program (2016-2018).³

²Clinical isolates collected in the US and resistance genotypes confirmed by DNA sequence analysis (CYP51A only, n=13; TR_{trn/L98H}, n=2; TR_{trn/Y112F/T289A}, n=2; resistant/no CYP51A mutation, n=6; resistant/CYP51A status unknown, n=8).³

CLSI, Clinical and Laboratory Standards Institute; CYP, cytochrome P450; MEC, minimal effective concentration; MIC, minimal inhibitory concentration.

Rezafungin: *In Vivo* Efficacy

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally.
Efficacy of Rezafungin in Prophylactic Mouse Models of Invasive Candidiasis, Aspergillosis, and *Pneumocystis* Pneumonia

Lynn Miesel, Melanie T. Cushion, Alan Ashbaugh, Santiago R. Lopez, Voon Ong

Survival – *A. fumigatus* (ATCC 13073) 1.85x10⁴ on Day 0

Kidney Tissue Fungal Burden – *Pneumocystis murina* 2x10⁶ on Day 0

- 100% prophylaxis efficacy against *A. fumigatus* at human equivalent doses (10 and 20 mg/kg)
- Prophylaxis efficacy against *Pneumocystis* comparable to TMP-SMX (standard of care) at human equivalent doses

*ps<0.05 vs. control.
C/S, control steroid; CPM, cyclophosphamide; LOD, limit of detection; TMP/SMX, trimethoprim-sulfamethoxazole.

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally.
Rezafungin: PK/PD

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally.
Rezafungin High Exposure for Sustained Fungicidal Activity

Exposure Shape Matters for Antifungal Efficacy

High drug exposure following once-weekly dosing resulted in greater fungal killing than divided doses

Simulated dose fractionation of rezafungin in healthy mice, total dose 2 mg/kg

Fungal burden in neutropenic mice following Candida albicans infection and 2 mg/kg rezafungin

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally.
Rezafungin PK/PD Target Attainment by MIC Associated With Net Fungal Stasis and CFU Reductions From Baseline

Percent Probability Against Worldwide C. albicans and C. glabrata MIC Distributions

Study Design

- Population PK model, non-clinical PK/PD targets, and *in vitro* surveillance data used to simulate probabilities of target attainment
- Simulated administration of rezafungin 400 mg
- Highest rezafungin MIC values in *fks* mutants observed were 0.25 mg/L for *C. albicans* and 2 mg/L for *C. glabrata*

Rezafungin 400 mg simulated to achieve high percent probabilities of PK/PD target attainment, providing efficacy for majority of patients

Single dose of rezafungin 400 mg simulated to reduce fungal burden, even in some *fks* mutant *Candida* isolates

CFU, colony-forming units; MIC, minimal inhibitory concentration; PD, pharmacodynamic; PK, pharmacokinetic.

Rezafungin Demonstrates High Probability of PK/PD Target Attainment

<table>
<thead>
<tr>
<th>MIC (µg/mL)</th>
<th>C. albicans(^1,2)</th>
<th>C. glabrata(^1,2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Micafungin</td>
<td>Anidulafungin</td>
</tr>
<tr>
<td>0.008</td>
<td>99.4</td>
<td>100</td>
</tr>
<tr>
<td>0.015</td>
<td>71.2</td>
<td>99.1</td>
</tr>
<tr>
<td>0.03</td>
<td>10.1</td>
<td>52.7</td>
</tr>
<tr>
<td>0.06</td>
<td>0.1</td>
<td>0.90</td>
</tr>
<tr>
<td>0.12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Shading reflects relative probability of PK/PD target attainment 1 week after dose (stasis).

Rezafungin high probability of PK/PD target attainment against *C. albicans* and *C. glabrata* in Monte Carlo simulations

MIC, minimal inhibitory concentration; PD, pharmacodynamic; PK, pharmacokinetic.

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally.
Rezafungin Sustained Tissue Distribution *In Vivo*

Rat PK Models

Uniform tissue distribution across liver, kidney, lungs, and spleen

Similar half-life/elimination in organs

AUC, area under the curve.

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally.
Rezafungin Distribution to Key Sites in Infection

Drug Concentrations in Plasma and ELF\(^1\)

Micafungin

<table>
<thead>
<tr>
<th>Time post-dose (h)</th>
<th>Mean Concentration (μg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>48</td>
<td>2</td>
</tr>
<tr>
<td>72</td>
<td>0</td>
</tr>
</tbody>
</table>

Plasma
ELF

Rezafungin

<table>
<thead>
<tr>
<th>Time post-dose (h)</th>
<th>Mean Concentration (μg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>48</td>
<td>25</td>
</tr>
<tr>
<td>72</td>
<td>5</td>
</tr>
</tbody>
</table>

Plasma
ELF

Study Design

- Study drugs administered IP as a single dose in CD-1 mice
 - Micafungin 5 mg/kg (≈ human dose of 100 mg)
 - Rezafungin 20 mg/kg (≈ human dose of 400 mg)
- Comparable levels in humans expected after 1 week due to rezafungin plasma half-life (133 h in human, 21 h in mouse)

Micafungin distribution into mouse ELF is similar to that observed in humans, suggesting that this model may be predictive of distribution in humans

Rezafungin concentrations >20-fold higher than MEC\(_{90}\) (0.015 μg/mL) against *Aspergillus fumigatus* and *A. flavus* in plasma (3 μg/mL) and ELF (4 μg/mL) after 3 days

High levels and long duration in ELF reinforce potential for rezafungin efficacy with once-weekly dosing

ELF, epithelial lining fluid; MEC, minimal effective concentration.

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally.
Rezafungin Tissue Penetration With a Single Dose (Zhao et al, 2017)

In vivo Comparison of Drug Penetration in the Liver

Study Design
- CD-1 mice, no immunosuppression
- *C. albicans* (SC5314), 1×10^7 on Day 0
- Study drugs administered on Day 3 post-infection
 - Micafungin 5 mg/kg 2-3 daily doses ($5 \text{ mg/kg} \approx \text{human dose of } 100 \text{ mg}$)
 - Rezafungin 20 mg/kg single dose ($20 \text{ mg/kg} \approx \text{human dose of } 400 \text{ mg}$)
- MALDI-MSI to assess drug penetration at infection site

- Multiple doses of micafungin did not reach tissue drug levels achieved with single dose of rezafungin
- Rezafungin accumulated in necrotic areas of each lesion at 48 and 72 hours

GMS, Gomori methenamine silver; H&E, hematoxylin and eosin; MALDI-MSI, matrix-assisted laser desorption ionization mass spectrometry imaging.

Rezafungin Tissue Penetration With a Single Dose (Zhao et al, 2017)

Drug Levels of Rezafungin and Micafungin vs Mutant Prevention Concentration

Study Design

- CD-1 mice, no immunosuppression
- *C. albicans* (SC5314), 1x10^7 on Day 0
- Study drugs administered on Day 3 post-infection
 - Micafungin 5 mg/kg 2-3 daily doses (5 mg/kg ≈ human dose of 100 mg)
 - Rezafungin 20 mg/kg single dose (20 mg/kg ≈ human dose of 400 mg)
- Tissue drug levels measured at infection site, in lesions and in uninvolved/surrounding tissues

Rezafungin drug levels above the MPC for *C. albicans* and *C. glabrata*

* *p<0.001.
MALDI-MSI, matrix-assisted laser desorption ionization mass spectrometry imaging.

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally.
Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally.
Evidence of Rezafungin Safety and Consistent Drug Exposures Across Populations

<table>
<thead>
<tr>
<th>Pharmacokinetics</th>
<th>Consistent rezafungin exposures observed, including in a wide range of renal function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatic Impairment</td>
<td>No clinically relevant differences in mean exposure observed between moderate or severe hepatic impairment and healthy controls</td>
</tr>
<tr>
<td>Drug-Drug Interaction Studies</td>
<td>No notable drug interactions</td>
</tr>
<tr>
<td></td>
<td>No dose adjustments with rezafungin coadministration</td>
</tr>
<tr>
<td>QT Interval Study</td>
<td>Lack of effect on QT interval in healthy adults</td>
</tr>
</tbody>
</table>

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally.
Rezafungin PK Profile in Healthy Adults

Long Plasma Half-Life and Minimal Metabolism Following IV Administration

Study Design
- Healthy human subjects, N=9
- Single 400 mg dose of radiolabeled rezafungin administered IV
- Collected blood, urine, and fecal samples over 60 days

Rezafungin accounted for ~77% total radiocarbon AUC
Metabolites accounted for <10% total plasma radioactivity AUC exposure
Consistent rezafungin exposures observed over a wide range of renal function

Rezafungin minimally metabolized and mainly excreted unchanged in feces
No dose adjustment expected for renal impairment

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally.

AUC, area under the curve.
Rezafungin in Renal and Hepatic Impairment

Details of Analyses
- Exposure (C_{max}) following rezafungin 400 mg
 - By Renal Function: from subjects in STRIVE, estimated using a population PK model and Bayesian estimation
 - By Hepatic Function: from subjects with moderate or severe hepatic impairment (HI; Child-Pugh class B or C) and healthy matched controls in an open-label study

- Consistent RZF exposures over a wide range of renal function were observed in STRIVE data

- Mean RZF exposure in moderate or severe HI was modestly reduced (up to ~30% lower) vs matched healthy subjects

- Of 9 AEs in 7 subjects, 1 was considered related to rezafungin (mild headache in subject with moderate HI)

*Renal impairment did not appear to affect rezafungin safety or efficacy in STRIVE

Differences in mean exposure in moderate or severe HI and healthy controls were not clinically relevant

*Geometric Means with 95% confidence intervals.
Flanagan et al, SCCM 2020; Flanagan et al ICHS 2021; Cidara Therapeutics, Data on file (submitted, TIMM 2021)

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally
Rezafungin Demonstrated No Notable Drug-Drug Interactions

Drug Interaction Study In Healthy Adults

<table>
<thead>
<tr>
<th>DRUG</th>
<th>POSSIBLE MECHANISM(S)</th>
<th>OBSERVATIONS</th>
<th>SUGGESTED ACTION</th>
</tr>
</thead>
</table>
| Tacrolimus | CYP3A4, P-gp | $\leftrightarrow C_{\text{max}}$
\downarrow AUC ~15% | No change in dose |
| Repaglinide | CYP2C8, OATP | $\leftrightarrow C_{\text{max}}$
\uparrow AUC ~15% | No change in dose |
| Metformin | OCT, MATEs | $\leftrightarrow C_{\text{max}}$
\leftrightarrow AUC | No change in dose |
| Rosuvastatin | BCRP, OATP | $\uparrow C_{\text{max}}$ ~12%
\uparrow AUC ~15% | No change in dose |
| Pitavastatin | OATP | $\leftrightarrow C_{\text{max}}$
\leftrightarrow AUC | No change in dose |
| Caffeine | CYP1A2 | $\leftrightarrow C_{\text{max}}$
\leftrightarrow AUC | No change in dose |
| Efavirenz | CYP2B6 | $\leftrightarrow C_{\text{max}}$
\leftrightarrow AUC | No change in dose |
| Midazolam | CYP3A | $\leftrightarrow C_{\text{max}}$
\leftrightarrow AUC | No change in dose |
| Digoxin | CYP2B6 | $\leftrightarrow C_{\text{max}}$
\leftrightarrow AUC | No change in dose |

Single-center, open-label trial (N=26). Substrate drugs dosed alone for 3 weeks, then with rezafungin for 3 weeks.\(^1\)

No dose adjustments required for these commonly used drugs when rezafungin is co-administered.

AUC, area under the curve; BCRP, breast cancer resistance protein; C_{max}, maximum plasma concentration; CYP, cytochrome P450; MATEs, multidrug and toxin extrusion protein; OATP, organic anion transporting polypeptides; OCT, organic cation transporter; P-gp, P-glycoprotein.

Rezafungin Phase 2 Treatment Trial

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally.
Trial Not Powered for Inferential Statistical Analysis

mITT N=183

REZAFUNGIN
(N=122)*
400/400 mg N=76
400/200 mg N=46

CASPOFUNGIN
(N=61)*
70/50 mg

Optional Oral Fluconazole Step-down
800/400 mg

Analysis Population
- Intent-to-treat (ITT)
- Safety
- Microbiological Intent-to-treat (mITT) and had documented *Candida* infection

Definition
- All Randomized
- and received ≥1 dose of study drug

N
- 207
- 202 (97.6%)
- 183 (88.4%)

* ~21% invasive candidiasis (ITT)

IC, invasive candidiasis; ITT, intent-to-treat; mITT, microbiological intent-to-treat
Summary of Rezafungin Efficacy (mITT Population)1

<table>
<thead>
<tr>
<th></th>
<th>Rezafungin 400 mg/400 mg weekly (N=76)</th>
<th>Rezafungin 400 mg/200 mg weekly (N=46)</th>
<th>Caspofungin 70 mg/50 mg daily (N=61)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Response Day 14</td>
<td>60.5</td>
<td>69.7</td>
<td>70.5</td>
</tr>
<tr>
<td>PI Assessment of Clinical Response Day 14</td>
<td>67.2</td>
<td>80.4</td>
<td>43</td>
</tr>
<tr>
<td>All-Cause Mortality Day 30</td>
<td>15.8</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>

EMA, European Medicines Agency; FDA, Food and Drug Administration; mITT, microbiological intent-to-treat; PI, principal investigator.

Rezafungin demonstrated similar efficacy vs. caspofungin

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally.
Efficacy Outcomes at Day 5 (mITT Population)\(^1\)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rezafungin 400 mg/400 mg weekly</td>
<td>76</td>
</tr>
<tr>
<td>Rezafungin 400 mg/200 mg weekly</td>
<td>46</td>
</tr>
<tr>
<td>Rezafungin Pooled</td>
<td>122</td>
</tr>
<tr>
<td>Caspofungin 70 mg/50 mg daily</td>
<td>61</td>
</tr>
</tbody>
</table>

Note initial dose of 400 mg in both rezafungin-treated arms.

Rezafungin efficacy compared with caspofungin evident by day 5

mITT, microbiological intention-to-treat.

Time to Negative Blood Culture

mITT: All randomized patients who received study drug and had documented Candida infection

Pooled rezafungin vs Caspofungin ($p=0.0016$ posthoc log-rank test)

- Rezafungin efficacy early in treatment course suggests clinical effect of high, front-loaded plasma drug exposure

mITT, microbiological intention-to-treat.
Time to Negative Blood Culture

mITT: All randomized patients who received study drug and had documented *Candida* infection

mITT2: Patients in mITT with positive blood culture within 12h before and 72h after enrollment

- Rezafungin efficacy early in treatment course suggests clinical effect of high, front-loaded plasma drug exposure
- More pronounced effect in mITT2 suggests patients with active infection may be more likely to benefit from potential clinical effect of front-loaded exposure

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally.

mITT, microbiological intention-to-treat.

Efficacy Endpoints During Initial Days of Treatment (mITT Population – Patients with Candidemia Only)

Day 1

Negative Blood Culture

At 24 hours

- Pooled Rezafungin: 74.7% (71/96)
- Caspofungin: 53.3% (27/50)

At 48 hours

- Pooled Rezafungin: 84.5% (80/93)
- Caspofungin: 64.4% (32/49)

Day 5

Efficacy Endpoints at Day 5

- **Mycological Cure**
 - Pooled Rezafungin: 73.1% (68/93)
 - Caspofungin: 58.3% (28/48)

- **Overall Success**
 - Pooled Rezafungin: 64.5% (60/93)
 - Caspofungin: 52.1% (25/48)

mITT, microbiological intention-to-treat.

Time to Negative Blood Culture (mITT Population)\(^1\)

1. Data on file from STRIVE Phase 2 clinical trial.
2. Data on file. Of patients with confirmed Candida infection (positive blood culture), mITT population (%; n/N).

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally.
Summary of Adverse Events (Safety Population)\(^1\)

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Rezafungin 400 mg/400 mg Weekly N=81</th>
<th>Rezafungin 400 mg/200 mg Weekly N=53</th>
<th>All Rezafungin (Pooled) N=134</th>
<th>Caspofungin 70 mg/50 mg Daily N=68</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
</tr>
<tr>
<td>≥1 TEAE</td>
<td>71 (87.7)</td>
<td>49 (92.5)</td>
<td>120 (89.6)</td>
<td>55 (80.9)</td>
</tr>
<tr>
<td>Severe</td>
<td>29 (35.8)</td>
<td>17 (32.1)</td>
<td>46 (34.3)</td>
<td>26 (38.2)</td>
</tr>
<tr>
<td>Study drug-related</td>
<td>7 (8.6)</td>
<td>6 (11.3)</td>
<td>13 (9.7)</td>
<td>9 (13.2)</td>
</tr>
<tr>
<td>Serious AE</td>
<td>35 (43.2)</td>
<td>28 (52.8)</td>
<td>63 (47.0)</td>
<td>29 (42.6)</td>
</tr>
<tr>
<td>Study drug-related</td>
<td>1 (1.2)</td>
<td>1 (1.9)</td>
<td>2 (1.5)</td>
<td>2 (2.9)</td>
</tr>
</tbody>
</table>

No concerning trends with rezafungin safety

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally.
Treatment-Emergent Adverse Events (≥10%, Safety Population)\(^1\)

<table>
<thead>
<tr>
<th>Treatment-emergent Adverse Event</th>
<th>Rezafungin 400 mg/400 mg Weekly N=81</th>
<th>Rezafungin 400 mg/200 mg Weekly N=53</th>
<th>All Rezafungin (Pooled) N=134</th>
<th>Caspofungin 70 mg/50 mg Daily N=68</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypokalemia</td>
<td>13 (16.0)</td>
<td>9 (17.0)</td>
<td>22 (16.4)</td>
<td>9 (13.2)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>7 (8.6)</td>
<td>11 (20.8)</td>
<td>18 (13.4)</td>
<td>10 (14.7)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>6 (7.4)</td>
<td>8 (15.1)</td>
<td>14 (10.4)</td>
<td>5 (7.4)</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>9 (11.1)</td>
<td>4 (7.5)</td>
<td>13 (9.7)</td>
<td>6 (8.8)</td>
</tr>
<tr>
<td>Anemia</td>
<td>6 (7.4)</td>
<td>7 (13.2)</td>
<td>13 (9.7)</td>
<td>4 (5.9)</td>
</tr>
<tr>
<td>Nausea</td>
<td>4 (4.9)</td>
<td>8 (15.1)</td>
<td>12 (9.0)</td>
<td>6 (8.8)</td>
</tr>
<tr>
<td>Abdominal Pain</td>
<td>5 (6.2)</td>
<td>6 (11.3)</td>
<td>11 (8.2)</td>
<td>5 (7.4)</td>
</tr>
<tr>
<td>Septic Shock</td>
<td>9 (11.1)</td>
<td>1 (1.9)</td>
<td>10 (7.5)</td>
<td>3 (4.4)</td>
</tr>
</tbody>
</table>

No concerning trends with rezafungin safety

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally.
Conclusions

Rezafungin 400 mg/200 mg dose demonstrated highest overall response, lowest all-cause mortality, and more rapid clearance of candidemia in STRIVE trial

Rezafungin 400 mg/200 mg dose now in Phase 3 trials

Adverse event data demonstrate the safety of rezafungin and its once-weekly dosing regimen

Rezafungin is in Phase 3 clinical development. Not registered in any country Registration requirements differ internationally
Global Response is defined as Clinical Response (as assessed by the Primary Investigator), Mycological Response and Radiological Response (for qualifying invasive candidiasis patients only).

EMA, European Medicines Agency; FDA, Food and Drug Administration.

Phase 3 Trial Design Mirrors STRIVE Phase 2 Trial
Prospective, randomized, double-blind, international, >100 centers

REZAFUNGIN
N=92 in mITT population
400/200 mg

CASPOFUNGIN
N=92 in mITT population
70/50 mg

Optional Oral Fluconazole Step-down
6 mg/kg to nearest 200 mg

*Global Response is defined as Clinical Response (as assessed by the Primary Investigator), Mycological Response and Radiological Response (for qualifying invasive candidiasis patients only).

EMA, European Medicines Agency; FDA, Food and Drug Administration.
Rezafungin Phase 3 Prophylaxis Trial in Allogeneic BMT

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally.
Rezafungin: The Potential For a Simplified Single Drug Paradigm

Antifungal Prophylaxis in Allogeneic Blood and Marrow Transplant Setting1,2

<table>
<thead>
<tr>
<th>Current Antifungal Prophylaxis Regimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluconazole</td>
</tr>
<tr>
<td>Fluconazole → Posaconazole or voriconazole</td>
</tr>
<tr>
<td>Posaconazole or voriconazole</td>
</tr>
<tr>
<td>Bactrim®, dapsone, or atovaquone</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rezafungin Regimen in Ongoing Phase 3 Trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rezafungin 400/200 mg once weekly</td>
</tr>
</tbody>
</table>

Transplant Day
-10 0 10 20 30 40 50 60 70 80 90

Standard of care for
- Candida and Aspergillus
- Pneumocystis

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally.
Trial Design

Phase 3, Prospective, Randomized, Double-Blind, International, Multicenter Trial¹

To evaluate efficacy and safety of rezafungin vs standard of care (azole plus TMP/SMX) against IFD caused by *Aspergillus*, *Candida*, and *Pneumocystis* in allogeneic BMT patients.

REZAFUNGIN (N=308)
400/200 mg once weekly

COMPARATOR (N=154)
400 mg fluconazole QD*
80 mg TMP/400 mg SMX QD

*Patients with acute GVHD can be switched to posaconazole

GVHD, graft-versus-host disease; IFD, invasive fungal disease; SMX, sulfamethoxazole; TMP, trimethoprim.

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally.

Ongoing Phase 3 Trial
IFD Prophylaxis in allogeneic BMT

1º Endpoint: Fungal-free survival at Day 90

462 patients enrolled

Follow-up
Rezafungin for Treatment and Prophylaxis

Unique Properties of a Next-Generation Echinocandin

- **Potent and broad-spectrum activity** against *Candida, Aspergillus, and Pneumocystis*
 - includes *C. auris*, subset of azole- and echinocandin-resistant isolates, *Aspergillus* activity includes azole-resistant species

- **Enhanced PK**
 - extended half-life (~130 hours), once-weekly front-loaded dosing, and greater tissue penetration compared with micafungin
 - Front-loaded dosing may improve early outcomes, time to negative blood culture, and day 5 outcomes compared with caspofungin

- **Safety and DDI profile of the echinocandin class**
 - may spare myelosuppression, TDM, hepatic and renal toxicity, non-compliance, and complications of managing/avoiding DDIs

- **Dosing and administration**
 - once-weekly use inpatient and outpatient may support earlier hospital discharge

- **Phase 2 STRIVE trial**
 - demonstrated rezafungin safety and efficacy for 1st line treatment of documented candidemia and/or invasive candidiasis

- **Phase 3 ongoing**
 - ReSTORE: 1st line treatment of candidemia and/or invasive candidiasis v caspofungin, 2-4 weeks
 - ReSPECT: 1st line prophylaxis of *Candida, Aspergillus, and Pneumocystis* in alloBMT ± GVHD, vs fluconazole/posaconazole/Bactrim®, 90 days

Rezafungin is in Phase 3 clinical development. Not registered in any country. Registration requirements differ internationally.