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Abstract: Rezafungin is a novel echinocandin in Phase 3 development for prevention of invasive
fungal disease caused by Candida spp., Aspergillus spp. and Pneumocystis jirovecii in blood and marrow
transplantation patients. For such patients, standard antifungal prophylaxis currently comprises an
azole for Candida and Aspergillus plus trimethoprim-sulfamethoxazole (TMP-SMX) for Pneumocystis
pneumonia (PCP) despite drug-drug-interactions and intolerability that may limit their use, thus,
alternatives are desirable. Rezafungin demonstrates a favorable safety profile and pharmacokinetic
properties that allow for once-weekly dosing in addition, to antifungal activity against these predom-
inant pathogens. Herein, the in vivo effects of rezafungin against Pneumocystis murina pneumonia
were evaluated in immunosuppressed mouse models of prophylaxis and treatment using microscopy
and qPCR assessments. In the prophylaxis model, immunosuppressed mice inoculated with P. mu-
rina were administered TMP-SMX (50/250 mg/kg 1×/week or 3×/week), caspofungin (5 mg/kg
3×/week), rezafungin (20 mg/kg, 1×/week or 3×/week; 5 mg/kg, 3×/week) intraperitoneally for
2, 4, 6 and 8 weeks, then immunosuppressed for an additional 6 weeks. Rezafungin administered for
4 weeks prevented P. murina from developing infection after rezafungin was discontinued. In the
treatment model, immunosuppressed mice with P. murina pneumonia were treated with rezafungin
20 mg/kg 3×/week intraperitoneally for 2, 4, 6 and 8 weeks. Treatment with rezafungin for 8 weeks
resulted in elimination of P. murina. Collectively, these studies showed that rezafungin could both
prevent infection and eliminate P. murina from the lungs of mice. These findings support the obli-
gate role of sexual reproduction for survival and growth of Pneumocystis spp. and warrant further
investigation for treatment of P. jirovecii pneumonia in humans.

Keywords: PCP; Pneumocystis jirovecii pneumonia (PJP) Pneumocystis; echinocandin; rezafungin;
obligate sexual reproduction

1. Introduction

Pneumocystis jirovecii is an important fungal pathogen in immunocompromised pa-
tients [1–5]. Formerly classified as a zoonotic protozoan, Pneumocystis carinii is the name
of the Pneumocystis species known to infect rats, while P. jirovecii is the species infecting
humans [6]. P. jirovecii can cause severe pneumonia with a high mortality rate especially if
untreated [7–9]. Owing to the change of nomenclature, the pneumonia can be referred to as
PCP or PJP (Pneumocystis jirovecii pneumonia) in humans. Patients who are most vulnerable
to developing PCP are severely immunocompromised following allogeneic hematopoi-
etic stem cell transplantation or solid organ transplantation, those with hematological
malignancies undergoing immunosuppressive chemotherapy, as well as patients with
rheumatologic disorders and those with HIV infection (CD4 count < 200 cells/µL) [2–4,10].
Among patients hospitalized for PCP, the most prevalent host factors were malignancies
(46%; 61% of the malignancies were hematologic) and HIV infection (18%) [11].
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The current recommendation for first-line prophylaxis against PCP is trimethoprim-
sulfamethoxazole (TMP-SMX) and is used in high-risk patients throughout the time
of treatment-induced immunosuppression or until the CD4 count increases to above
200 cells/µL [2,3,5,12,13]. Prophylaxis is recommended to continue from engraftment or
post-transplant for ≥6 months [3,12]. Prolonged prophylaxis for PCP following solid organ
transplantation has been suggested in patients at a higher risk of developing late cases of
PCP [1,14–16].

Although the efficacy of TMP-SMX is well established, there are concerns for its safety
and tolerability, such as bone marrow suppression, liver toxicity and severe skin reac-
tions [12,13]. In an open-label randomized controlled study, up to 42% of patients receiving
TMP-SMX for PCP prophylaxis discontinued therapy due to adverse events [17]. Options
for second-line prophylaxis, such as aerosolized pentamidine, dapsone and atovaquone,
should be considered only if a patient is intolerant to or experiences a severe adverse event
from TMP-SMX. None of these agents have been compared with TMP-SMX as first-line
prophylaxis in a randomized controlled trial and considerations with their use include cost,
bone marrow toxicity, route and frequency of administration and the need for additional
prophylactic coverage [12].

Rezafungin is a novel echinocandin currently, in Phase 3 development for prophylaxis
of invasive fungal disease in blood and marrow transplantation (ReSPECT NCT04368559).
While rezafungin antifungal activity covers a broad-spectrum of Candida and Aspergillus
spp. similar to that of currently approved echinocandins [18–20], it is notable for also
demonstrating excellent activity against Pneumocystis species (spp.) comparable to that of
TMP-SMX, as observed in biofilms and animal models [21–23]. Rezafungin demonstrates a
long half-life (~130 h in humans) and safety profile that, as previously reported, refs. [24,25]
support front-loaded, once-weekly dosing. Collectively, these data suggest the potential
for a simplified, single-agent antifungal prophylaxis regimen with rezafungin.

The echinocandins are a newer class of antifungal agents and currently approved
echinocandins have had mixed responses in patients with PCP [26,27]. The mechanism of
action, inhibition of β-1,3-D-glucan (BG) synthesis, could explain the disparate efficacy in
patients, as Pneumocystis spp. have two distinct life cycle stages: the trophic forms, which
do not express BG and the asci, which contain this polymerized sugar in their cell wall [28].
Pneumocystis spp. have been thought to replicate asexually via binary fission of the trophic
forms and sexually through a mating process resulting in asci [29]. Recent reports have
questioned whether the asexual mode is always operational and suggest these fungi may
rely solely on sexual reproduction to proliferate [30]. In studies of murine PCP, it was
shown that asci disappear from the infected mouse lungs after 3 weeks of treatment, while
large numbers of non-BG expressing organisms remain, illustrating the differential effect
on these life cycle stages [28].

In previous studies with rezafungin in immunosuppressed mouse models of prophy-
laxis and treatment, we reported the inhibition of growth (but not clearance) of all life cycle
stages of P. murina [22,23]. Thus, the objectives of the present study were 2-fold: to identify
the precise dose and duration of rezafungin (1) that completely prevented infection in the
prophylactic mouse model and (2) that eliminated established infection in the treatment
mouse model of PCP.

2. Materials and Methods

These studies were performed in accordance with the Guide for the Care and Use
of Laboratory Animals, 8th ed. (National Academies Press, Washington, DC, USA), in
AAALAC-accredited laboratories under the supervision of veterinarians. In addition, all
procedures were conducted in compliance with the Institutional Animal Care and Use
Committee at the Veterans Affairs Medical Center, Cincinnati, OH, USA.

To safeguard against environmental exposure of P. murina and other microbes, mice
were housed under barrier conditions with autoclaved food; acidified water (sulfuric acid
1 mL/L) and bedding sterilized in shoebox cages equipped with sterile microfilter lids.



J. Fungi 2021, 7, 747 3 of 11

Pathogenic bacteria cannot grow in acidified water (pH between 2.5 and 3.0) and many
research institutes and universities, as well as The Jackson Laboratory, use acidified water
for their mice [31]. Access was limited to animal care and technical personnel who are
required to wear sterile caps, gowns, gloves, and booties while in the animal rooms. The
animals are observed daily and those that appear gravely ill or moribund are routinely
euthanized by a method approved by the AVMA Panel on Euthanasia.

Test agents were supplied by Cidara Therapeutics, Inc. (San Diego, CA, USA). Sul-
famethoxazole/Trimethoprim (TMP-SMX) was supplied by Aurobindo Pharma USA (Day-
ton, NJ, USA). Caspofungin (CAS) was supplied by Merck & Co (Whitehouse Plains,
NJ, USA).

2.1. PCP Prophylaxis Mouse Model

(Refer to Scheme 1, below). C3H/HeN mice (Charles River, Wilmington, MA, USA)
weighing 20 g were immunosuppressed by adding dexamethasone (4 mg/L) to acidified
drinking water. The mice were infected with P. murina organisms isolated from previously
infected mice and stored in liquid nitrogen (Cincinnati VAMC, Cincinnati, OH, USA).
Such isolates are tested for microbial contamination and ATP content before use as quality
control methods [32]. A dose of 2 × 106/50 µL was instilled by intranasal inoculation
along with the concurrent initiation of prophylactic drug treatments. Inoculation of a set
number of organisms provides a consistent infection among the groups of mice. Given
the slow growing nature of P. murina, drug administration at the time of inoculation
models prophylactic administration. Seven groups of mice received one of the following
regimens administered intraperitoneally (IP): corticosteroid as negative control, TMP-SMX
(50/250 mg/kg, 1×/week or 3×/week) as positive control dosed at the same times as the
other test agents, CAS (5 mg/kg, 3×/week) as comparator echinocandin, or rezafungin
(20 mg/kg, 1×/week or 3×/week; 5 mg/kg, 3×/week). The control group included
10 mice and each prophylaxis regimen included 40 mice. Prophylaxis was continued for 2, 4,
6 and 8 weeks (n = 10 for each timepoint). A total of 10 mice per group were needed to detect
statistically significant differences between groups. Following discontinuation of treatment,
mice were immunosuppressed for an additional 6 weeks, allowing for reactivation of any
residual P. murina. Mice were then euthanized by CO2 and the lungs were processed
for analysis by homogenization. Dilutions of the lung homogenates were dropped on
pre-etched slides (10 µL × 3 drops per slide) stained with Diff-Quik and Cresyl Echt Violet
(CEV) and microscopically enumerated (30 Oil Immersion Fields at 1250×) to quantify the
nuclei and asci forms of the fungus, respectively [28].
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Of note, CAS 5 mg/kg and rezafungin 20 mg/kg doses were selected for this study
because they are considered the human equivalent doses in mice. The AUC/Cmax of
CAS 5 mg/kg in mice exceeds that in human [33,34] and serves as a good comparator
to rezafungin if administered using the same 3×/week dosing regimen. The 3×/week
frequency of rezafungin was chosen because the half-life is shorter in mice (~25 h) [35]
versus humans (~130 h) and this dosing regimen would approximate the AUC achieved in
humans while compensating for the shorter half-life in mice.

2.2. PCP Treatment Mouse Model

(Refer to Scheme 2, below) C3H/HeN mice (Charles River) (20 g) were infected with
P. murina through exposure to seed mice (those with fulminant infection) by rotation into
the cages for 2 weeks. Mice were immunosuppressed by adding dexamethasone (4 mg/L)
to acidified drinking water. The exposure method is a more natural route of infection and
can be used in treatment studies because sentinel mice are checked for the presence of
standard moderate infections prior to treatment.
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Scheme 2. PCP Treatment Model. After exposure to P. murina (Pm) and immunosuppression for
6 weeks, 10 control (untreated, “C/S”) mice were sacrificed to evaluate organism burden. Forty
mice were randomized and rezafungin treatment was initiated. After 2 weeks of treatment (red
box and “8 weeks” arrow) 10 mice were sacrificed as well as the remaining C/S mice. Lungs were
homogenized and evaluated for organism burden. Time points are indicated by the arrows on top of
the boxes. Treatment length (TX) is indicated in each box (2-, 4-, 6-, 8 weeks).

Sixty mice received the immunosuppressant and after 6 weeks of immunosuppression,
10 of the 20 mice that were to receive no treatment (controls) were sacrificed and evaluated
for infection. At the same time, the remaining 40 mice were put on rezafungin at 20 mg/kg
IP 3×/week for up to 8 weeks of treatment. After 2 weeks of rezafungin treatment (week
8 time point; 6 weeks of immunosuppression + 2 weeks of treatment), 10 of the immuno-
suppressed, rezafungin-treated mice and the remaining untreated controls (10 mice) were
sacrificed. Infected and untreated mice do not survive past this time point. After 4 weeks
of rezafungin treatment (week 10 time point), 10 mice were sacrificed and evaluated for
infection and after 6 weeks of treatment (week 12 time point), another 10 mice were eval-
uated. At the final week 14 time point, the remaining 10 mice had received 8 weeks of
the rezafungin regimen and were sacrificed. Mice were euthanized by CO2 inhalation
and the lungs were processed for analysis by homogenization. Lung homogenates were
microscopically analyzed for organism burdens as described above.

Further analysis by RT-qPCR used total RNA isolated from the lung homogenates
with TRIZOL reagent and transcribed to cDNA to quantify P. murina ribosomal RNA gene
message levels. RT-qPCR was performed using a previously published TaqMan assay [36].

The threshold cycle for each sample was defined as the point at which fluorescence
generated by degradation of the TaqMan probe showed a significant increase above base-
line. A standard curve using a dilution series of cDNA made from RNA isolated from
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107 P. murina nuclei was generated to convert the threshold cycle data to P. murina nuclei.
This standard curve was used to estimate the level of infection.

2.3. Statistical Analysis

The following statistical analyses were performed for both models (PCP prophylaxis
and treatment models). The nuclei and asci count for each lung were log transformed and
analyzed by analysis of covariance to determine statistical significance (p < 0.05). Individual
groups were compared with the Student–Newman–Keuls t test for multiple comparisons.
Survival curves were based on the 98-day treatment period (GraphPad Prism v9).

3. Results
3.1. PCP Prophylaxis Mouse Model

Significant reductions in both nuclei and asci burdens at all timepoints were observed
in all mice that received rezafungin as prophylaxis compared with negative control (vehicle)
mice at week 8 (Figure 1). Following 4 weeks of rezafungin prophylaxis (plus 6 weeks
of additional immunosuppression; week 10 timepoint), rezafungin 20 mg/kg (1×/week
or 3×/week) prevented P. murina from activating an infection. Further, 6 and 8 weeks of
rezafungin prophylaxis (week 12 and 14 timepoints) prevented reactivation of P. murina in
100% of the mice. Significant differences in nuclei and asci counts between each group given
rezafungin and caspofungin (CAS; comparator echinocandin control) were observed at 2
and 4 weeks of treatment (week 8 and 10 timepoints, respectively). Rezafungin prophylaxis
resulted in significantly lower nuclei and asci counts at 2, 4 and 6 weeks (week 8, 10 and 12
timepoints) compared with TMP-SMX 1×/week (positive treatment control). At week 14,
improved survival was observed in the rezafungin 20 mg/kg 3×/week prophylaxis group
compared with CAS after 56 days of treatment (Figure 2).

3.2. PCP Treatment Mouse Model

Significant reductions in nuclei and asci counts were observed after 2 weeks of reza-
fungin treatment (8-week study duration) compared with the control group (Figure 3). No
asci were present at any of the timepoints in the rezafungin-treated mice and significant
reductions in nuclei were observed at all timepoints compared with the control group.
Significant reductions in nuclei were observed from week 8 to week 10 and from week
10 to week 12, with no nuclei present at week 14. There was no significant difference in
survival between the control group and rezafungin groups.

Analysis by quantitative reverse transcription PCR (RT-qPCR) showed significant
reductions of signals at all timepoints in the rezafungin groups compared with the week
8 control group (Figure 4). At the 14-week time point, no signal was detected, indicating
elimination of the infection.
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Figure 1. Log10 mean nuclei and asci counts after 2 to 8 weeks of prophylactic treatment followed by
additional 6 weeks of immunosuppression without treatment. Color code: red = C/S; vehicle treated
negative control; green = rezafungin; pink = T/S (trimethoprim/sulfamethoxazole), blue = CAS
(caspofungin). Bracket denotes significant difference from week 8 C/S group and CAS group
(p < 0.05). Capped line indicates significant difference from week 8 C/S group. Red dotted line
indicates limit of microscopic detection (log10 4.24).
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rezafungin 20 mg/kg/3×/week (green line) and CAS (grey line) at week 14 (p < 0.05).

J. Fungi 2021, 7, x FOR PEER REVIEW 7 of 11 
 

 

CAS (caspofungin). Bracket denotes significant difference from week 8 C/S group and CAS group 

(p < 0.05). Capped line indicates significant difference from week 8 C/S group. Red dotted line indi-

cates limit of microscopic detection (log10 4.24). 

0 10 20 30 40 50 60
0

20

40

60

80

100

Week 14 Survival

Days

P
e
rc

e
n

t 
s
u

rv
iv

a
l

20 mg/kg/3×/wk

20 mg/kg/1×/wk

5 mg/kg/3×/wk

CAS 5 mg/kg/3×/wk

TMP/SMX 3×/wk

TMP/SMX 1×/wk

*

 

 

Figure 2. Survival curves for rezafungin and comparators at Week 14 after 56 treatment days of 

study. CAS = caspofungin; TMP/SMX = trimethoprim/sulfamethoxazole. * Significant difference be-

tween rezafungin 20 mg/kg/3×/week (green line) and CAS (grey line) at week 14 (p < 0.05). 

3.2. PCP Treatment Mouse Model 

Significant reductions in nuclei and asci counts were observed after 2 weeks of re-

zafungin treatment (8-week study duration) compared with the control group (Figure 3). 

No asci were present at any of the timepoints in the rezafungin-treated mice and signifi-

cant reductions in nuclei were observed at all timepoints compared with the control 

group. Significant reductions in nuclei were observed from week 8 to week 10 and from 

week 10 to week 12, with no nuclei present at week 14. There was no significant difference 

in survival between the control group and rezafungin groups.  

Analysis by quantitative reverse transcription PCR (RT-qPCR) showed significant re-

ductions of signals at all timepoints in the rezafungin groups compared with the week 8 

control group (Figure 4). At the 14-week time point, no signal was detected, indicating 

elimination of the infection. 

 

Figure 3. Treatment with rezafungin eliminates P. murina. Log10 mean nuclei and asci counts after 2 

to 8 weeks of rezafungin treatment. Color code: red = vehicle treated control bars; green = 

Figure 3. Treatment with rezafungin eliminates P. murina. Log10 mean nuclei and asci counts after 2
to 8 weeks of rezafungin treatment. Color code: red = vehicle treated control bars; green = rezafungin-
treated 20 mg/kg/3×/week. Bracket denotes significant difference from 8-week control (p < 0.05).
# denotes significant difference from previous week timepoint. Red dotted line indicates limit of
detection (log10 4.24).
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4. Discussion

Echinocandins inhibit the synthesis of BG, an essential component of the fungal
cell wall [23] found in the asci form of Pneumocystis spp. In previous studies using the
mouse model of PCP, anidulafungin was shown to halt the sexual cycle of P. murina
and P. carinii by inhibiting the synthesis of BG in the ascus form; however, significant
numbers of non-asci forms remained in the lungs [28,37]. Notably, mice without asci
due to anidulafungin treatment, were unable to transmit the infection. These studies
provided evidence that the ascus is the agent of transmission for Pneumocystis spp. and is
needed for a productive infection. In addition, echinocandin discontinuation along with
continued immunosuppression allowed the asci to repopulate the lungs, showing that
those organisms remaining after anidulafungin treatment were viable and able to reactivate
the infection [28].

In contrast, an early in vivo study evaluating rezafungin as prophylaxis with TMP-
SMX as the active control in a mouse model of PCP showed that rezafungin statistically
significantly reduced nuclei and asci counts of P. murina at all doses tested (20 mg/kg,
1×/week or 3×/week and 5 mg/gkg 3×/week) and demonstrated in vivo efficacy (20).
Furthermore, in the present studies, prophylaxis with rezafungin for as short as 4 weeks
prevented P. murina organisms from developing an infection after rezafungin had been
discontinued and animals were immunosuppressed for an additional 6 weeks, more
effectively than CAS.

Data from the treatment mouse model study showed that rezafungin inhibits asci and
consequently sexual reproduction in a manner dependent on treatment duration. It can
also be surmised that P. murina cannot be sustained by alternative means of replication,
such as asexual reproduction, in the absence of asci during an extended treatment period
with rezafungin.

With the increasing complexity of azole-based prophylaxis (e.g., drug-drug interac-
tions), echinocandins have garnered attention for their potential in antifungal prophy-
laxis [38,39]. However, despite limited alternatives to standard TMP-SMX, micafungin,
anidulafungin and CAS have not been recommended for prophylaxis against PCP based
on in vivo efficacy [26,40–42]. The PK profile of rezafungin not only sets it apart from other
echinocandins in traditional PK analysis; higher penetration of rezafungin at the infected
tissue site, as observed compared with micafungin, may explain observed differences in
efficacy compared with other echinocandins [23].

Rezafungin is the first antifungal agent to be studied as a single agent for prophylaxis
against Candida spp., Aspergillus spp. and P. jirovecii. Rezafungin has demonstrated in vivo
efficacy comparable to that of TMP-SMX and, furthermore, lacks the safety concerns associ-
ated with TMP-SMX. While our study was limited to nonclinical models, clinical evaluation
of rezafungin to date has demonstrated its safety and efficacy. Rezafungin was safe and
well tolerated in single- and multiple-dose studies of intravenous rezafungin administered
up to 400 mg once weekly [24,43,44], as well as in the completed Phase 2 trial of rezafungin
for treatment of candidemia and invasive candidiasis (STRIVE; NCT02734862) [44]. In the
ongoing phase 3, prospective, randomized, double-blind trial of rezafungin for prevention
of invasive fungal disease caused by Candida, Aspergillus and P. jirovecii in patients under-
going allogeneic blood and marrow transplantation (ReSPECT; NCT04368559), the efficacy
and safety of once-weekly IV rezafungin will be evaluated compared with standard of care
(once-daily azole plus TMP-SMX).

The in vivo preclinical data reported herein demonstrate the excellent activity of
rezafungin against P. murina and support its ongoing development as a potential new
approach to antifungal prophylaxis and therapy.
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