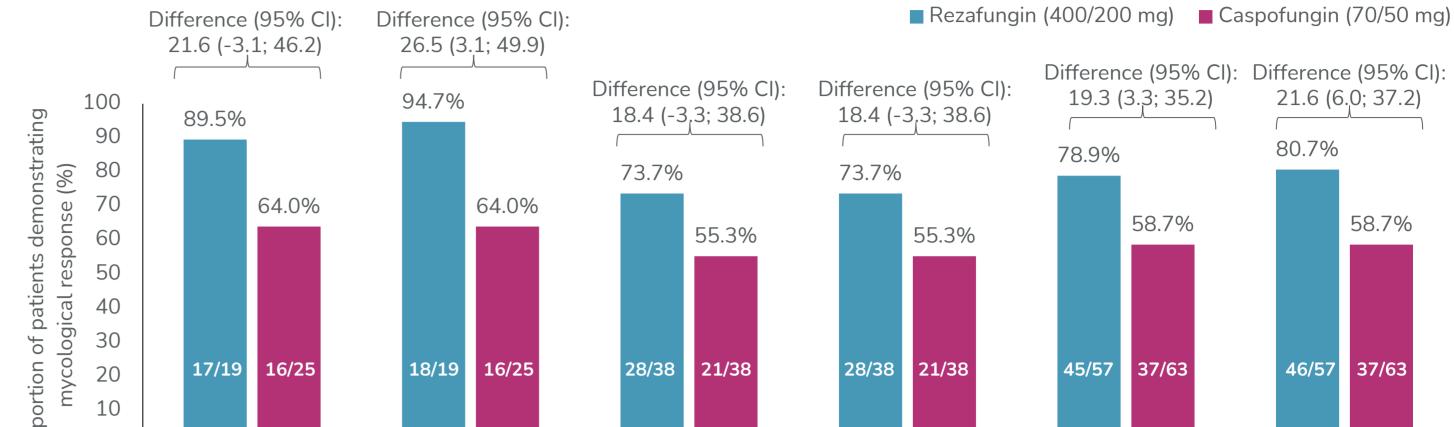
Treatment outcomes with rezafungin and caspofungin in people aged 65 years and above ePoster with candidaemia and/or invasive candidiasis: Integrated analysis of pooled Phase 2 and Phase 3 data

OA Cornely¹, GR Thompson III², A Soriano³, B J Kullberg⁴, M Kollef⁵, J Vazquez⁶, PM Honore⁷, M Bassetti⁸, J Pullman⁹, C Dignani¹⁰, AF Das¹¹, T Sandison¹¹, PG Pappas¹² on behalf of the ReSTORE trial investigators

¹University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany; ²University of California Davis Medical Center, Davis, CA, USA; ³Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Spain; ⁴Radboud University Medical Center, Nijmegen, The Netherlands; ⁵Washington University, Augusta University, Augusta, GA, USA; ⁷Brugman University Hospital, Brussels, Belgium; ⁸University of Genoa, Genoa, Italy; ⁹Mercury Street Medical, Butte, MT, USA; ¹⁰PSI-CRO, Durham, NC, USA; ¹¹Cidara Therapeutics, Inc., San Diego, CA, USA; ¹²University of Alabama at Birmingham, Birmingham, AL, USA.

INTRODUCTION AND OBJECTIVES


- Factors including frailty and multimorbidity can affect candidaemia and/or invasive candidiasis treatment in older people.¹
- The current analysis explored data from candidaemia and/or invasive candidiasis patients aged \geq 65 years who were treated with the novel, once-weekly echinocandin, rezafungin, or caspofungin in the STRIVE (Phase 2: NCT02734862) and ReSTORE (Phase 3: NCT03667690) clinical trials.^{2,3}

METHODS

- STRIVE was a Phase 2, randomised, double-blind, double-dummy trial conducted in 44 centres across 10 countries. ReSTORE comprised a randomised, double-blind, double-dummy, Phase 3 noninferiority trial, conducted at 66 centres across 15 countries.
- In both studies, adults with candidaemia and/or invasive candidiasis, diagnosed by systemic signs and mycological confirmation, received rezafungin once-weekly (Week 1: 400 mg; Weeks 2-4: 200 mg) or once daily caspofungin (Day 1: 70 mg; Days 2–28: 50 mg) by intravenous injection for \geq 14 days (\leq 4 weeks).

RESULTS (CONTINUED)

Figure 1. Mycological response at Days 5 and 14 in candidaemia/invasive candidiasis patients aged ≥65 years: STRIVE, ReSTORE and pooled analysis (mITT population)

- Post hoc analysis examined pooled STRIVE/ReSTORE data for subjects aged \geq 65 years.
- Day 30 all-cause mortality (ACM) and mycological response at Days 5 and 14 were examined for the modified intention-to-treat (mITT) population, comprising subjects with mycological candidaemia and/or invasive candidiasis diagnosis within 96 hours of randomisation who received ≥ 1 study drug dose.
- Safety outcomes included treatment-emergent adverse events (TEAEs) and serious adverse events (SAEs) in subjects who received ≥ 1 dose of study drug (safety population).

RESULTS

Study populations (aged \geq 65 years)

- The mITT population included 120 patients: 57 subjects in the rezafungin treatment arm and 63 in the caspofungin arm. The safety population included 132 subjects: 64 patients in the rezafungin treatment arm and 68 in the caspofungin arm.
- Baseline demographic and characteristic data are shown in Table 1 for subjects in the mITT population (aged \geq 65 years), along with the Candida species identified at baseline. The treatment arms were generally well balanced. The majority of each treatment group was male (68.4%) rezafungin arm; 60.3% caspofungin arm) and diagnosed with candidaemia (75.4% rezafungin arm; 74.6% caspofungin arm). The most common Candida species identified at baseline were C. albicans, C. glabrata, C. tropicalis and C. Parapsilosis complex.

Table 1. Baseline demographics and characteristics for subjects aged \geq 65 years included in the pooled analysis of STRIVE (Phase 2) and ReSTORE (Phase 3) study data (mITT population)

	Rezafungin (400/200 mg) (N=57)	Caspofungin (70/50 mg) (N=63)
Age, mean ± SD (range), years	74.9 ± 7.23 (65–91)	74.7 ± 6.71 (65–93)
Gender, n (%)		
Male	39 (68.4)	38 (60.3)
Female	18 (31.6)	25 (39.7)
Race, n (%)		
Black or African American	2 (3.6)	1 (1.6)
Asian	9 (16.4)	13 (20.6)
White	43 (78.2)	49 (77.8)
Other/not reported	3 (5.2)	0
Final diagnosis, n (%)		
Candidaemia	43 (75.4)	47 (74.6)
Invasive candidiasis ^a	14 (24.6)	16 (25.4)
Modified APACHE II score ^b		
≥20, n (%)	8 (14.0)	15 (23.8)
<20, n (%)	49 (86.0)	48 (76.2)
Candida species		
Candida albicans	28 (49.1)	31 (49.2)
Candida glabrata	16 (28.1)	13 (20.6)
Candida kefyr	0	1 (1.6)
Candida krusei	2 (3.5)	2 (3.2)
Candida metapsilosis	1 (1.8)	0
Candida parapsilosis complex	6 (10.5)	10 (15.9)
Candida tropicalis	9 (15.8)	8 (12.7)

rop	0							_
		Day 5	Day 14	Day 5	Day 14	Day 5	Day 14	
		STRIVE	STRIVE	ReSTORE	ReSTORE	Post hoc integrated	Post hoc integrated	
		(Phase 2)	(Phase 2)	(Phase 3)	(Phase 3)	analysis	analysis	

All analyses were conducted using the mITT population, which included all subjects with a mycological diagnosis of candidaemia and/or invasive candidiasis within 96 hours of randomisation who received ≥ 1 dose of study drug. Abbreviations: CI, confidence interval; mITT, modified intention to treat.

Pooled STRIVE/ReSTORE trial safety data for candidaemia/invasive candidiasis patients aged ≥ 65 years (safety population)

• The most common TEAEs with rezafungin were hypokalaemia, diarrhoea, vomiting and anaemia (Table 2). Eight subjects reported rezafungin-related TEAEs and 7 had caspofungin-related TEAEs. SAEs comprised one case each of first-degree atrioventricular block (rezafungin arm) and acute liver injury (caspofungin arm).

Table 2. Pooled STRIVE/ReSTORE trial safety data for candidaemia/invasive candidiasis patients aged \geq 65 years treated with rezafungin (400 mg/200 mg) or caspofungin (70 mg/50 mg; safety population)

System Organ Class Preferred Term	Rezafungin (400/200 mg) (N=64)	Caspofungin (70/50 mg) (N=68)
Subjects with ≥ 1 TEAE, n (%)	59 (92.2)	62 (91.2)
Subjects with TEAEs leading to study discontinuation, n (%)	7 (10.9)	19 (27.9)
TEAEs affecting $\geq 10\%$ of safety population, n (%)		
Blood and lymphatic system disorders		
Anaemia	7 (10.9)	5 (7.4)
Gastrointestinal disorders		
Diarrhoea Manaitin a	10 (15.6)	9 (13.2)
Vomiting Metabolism and nutrition disorders	8 (12.5)	2 (2.9)
Hypokalaemia	11 (17.2)	7 (10.3)
Infections and infestations	<u>⊥⊥ (⊥/.∠)</u>	/ (10.5)
Septic shock	6 (9.4)	8 (11.8)
Renal and urinary disorders		
Acute kidney injury	4 (6.3)	8 (11.8)
Urinary tract infection	1 (1.6)	7 (10.3)
Subjects with ≥ 1 drug-related TEAE, n (%)	8 (12.5)	7 (10.3)
Cardiac disorders		
Atrioventricular block (first degree)	1 (1.6)	0
Gastrointestinal disorders		
Diarrhoea	1 (1.6)	1 (1.5)
Administration site conditions		
Catheter site discolouration	0	1 (1.5)
Hepatobiliary disorders		
Hepatocellular injury	0	1 (1.5)
Hyperbilirubinemia	1 (1.6)	0
Liver injury	0	1 (1.5)
Infections and infestations		
Sepsis	1 (1.6)	0
Investigations		
Blood bilirubin increased	1 (1.6)	0
Electrocardiogram QT prolonged	1 (1.6)	1 (1.5)
Eosinophil count increased	1 (1.6)	0
Hepatic enzyme increased	1 (1.6)	1 (1.5)
Metabolism and nutrition disorders		
Hyponatraemia	1 (1.6)	0
Nervous system disorders		
Co-ordination abnormal	0	1 (1.5)
Headache	0	1 (1.5)
Nystagmus	0	1 (1.5)
Tremor	1 (1.6)	0
Subjects with ≥ 1 SAE, n (%)	37 (57.8)	38 (55.9)
Subjects with ≥ 1 drug-related SAE, n (%)	1 (1.6)	1 (1.5)
	- ()	- ()

^aPatients who progressed from candidaemia to invasive candidiasis based on radiological and/or tissue/fluid culture assessment through Day 14. ^bReported for patients with APACHE II score data available.

The mITT population used in the current analysis included all subjects included in the STRIVE and ReSTORE trials (aged ≥65 years) with a mycological diagnosis of candidaemia and/or invasive candidiasis within 96 hours of randomisation who received ≥ 1 dose of study drug. Abbreviations: APACHE, acute physiology and chronic health evaluation; SD, standard deviation.

ACM and mycological response in patients aged ≥ 65 years (mITT population)

- Day 30 ACM rate was 14.0% (rezafungin arm) and 31.7% (caspofungin arm). The between-group difference (95% confidence interval [CI]) for Day 30 ACM was -17.6 (-32.5; -2.8).
- Day 5 mycological response was 78.9% (rezafungin arm) and 58.7% (caspofungin arm). The between-group difference (95% CI) at Day 5 was 19.3 (3.3; 35.2; Figure 1). Day 14 mycological response was 80.7% (rezafungin arm) and 58.7% (caspofungin arm). The between-group difference (95% CI) at Day 14 was 21.6 (6.0; 37.2).

The safety population included all subjects who had received ≥ 1 dose of study drug. Abbreviations: SAE, serious adverse event; TEAE, treatment-emergent adverse event.

CONCLUSION

Time to negative blood culture (mITT population)

- Median time to negative blood culture was 20.5 hours (rezafungin arm) and 26.8 hours (caspofungin arm). The between group difference was statistically significant (P=0.006; Log Rank Test). Overall, 68.9% (rezafungin arm) and 47.8% (caspofungin arm) had negative blood cultures at 24 hours, while 82.2% (rezafungin arm) and 58.7% (caspofungin arm) had negative cultures at 48 hours.
- Subanalysis of ReSTORE study data for patients aged ≥ 65 years showed comparable efficacy with rezafungin and caspofungin therapy. Early outcomes of mycological response at Day 5 and time to negative blood culture were improved with rezafungin, suggesting a potential clinical effect associated with the front-loaded dosing.
- Incidence of drug-related TEAE and SAEs were similar between groups, indicating no impact of the front-loaded dose on safety outcomes for this specific and potentially frail patient population.
- Further analysis is required to understand underlying factors that may impact treatment outcomes.

Disclosures

OA Cornely: reports grants or contracts from Amplyx, Basilea, Bundesministerium für Bildung und Forschung, Cidara, German Center for Infection Research, European Union Directorate-General for Research, European Union Directorate-General for Research and Innovation (101037867), F2G, Gilead, Matinas, MedPace, MSD, Mundipharma, Octapharma, Pfizer, and Scynexis; consulting fees from AbbVie, Amplyx, Biocon, Biosys, Cidara, Da Volterra, Gilead, IQVIA, Janssen, Matinas, MedPace, Menarini, Molecular Partners, Noxxon, Octapharma, Pardes, Pfizer, Pharma Support America, Scynexis, and Seres; honoraria from Abbott, AbbVie, Al-Jazeera Pharmaceuticals, Astellas, Gilead, Grupo Biotoscana/United Medical/Knight, Hikma, MedScape, MedUpdate, Merck/MSD, Mylan, Noscendo, Pfizer, and Shionogi; payment for expert testimony from Cidara; data safety monitoring board or advisory board membership for Actelion, Allecra, Cidara; data safety monitoring board or advisory board membership for Actelion, Allecra, Cidara; data safety monitoring board or advisory board membership for Actelion, Allecra, Cidara; data safety monitoring board or advisory board membership for Actelion, Allecra, Cidara; data safety monitoring board or advisory board membership for Actelion, Allecra, Cidara; data safety monitoring board or advisory board membership for Actelion, Allecra, Cidara; data safety monitoring board or advisory board membership for Actelion, Allecra, Cidara; data safety monitoring board or advisory board membership for Actelion, Allecra, Cidara; data safety monitoring board or advisory board membership for Actelion, Allecra, Cidara; data safety monitoring board or advisory board membership for Actelion, Allecra 113 007.7); stocks from CoRe Consulting; and is a board member of German Society for Haematology, International Society for Human & Animal Mycology, Mycoses Study Group-Education and Research Consortium, and Wiley, outside of the submitted work. GR Thompson: grants and consulting fees from Amplyx, Astellas, Cidara, F2G, and Manye; grants from Gilead Sciences; consulting fees and honoraria from Angelini, Gilead, Menarini, MSD, and Shionogi, outside of the submitted work; and grants, consulting fees, honoraria, and support attending meetings from Pfizer, outside of the submitted work. BJ Kullberg: independent data review committee membership for Cidara. GRT reports grants and consulting fees from Amplyx, Astellas, Cidara, F2G, and Manye; grants from Merck; and data safety monitoring board membership for Pfizer, outside of the submitted work. M Kollef: grants from Barnes-Jewish Hospital Foundation and consulting fees from Merck, Pfizer, and Shionogi, outside of the submitted work. J Vazquez: consulting fees from Merck, Pfizer, and Scynexis, outside of the submitted work. M Bassetti: honoraria from and membership of data safety monitoring board or advisory board for Angelini, Cidara, Gilead, Menarini, MSD, Pfizer, and Shionogi, outside of the submitted work. AF Das: consulting fees from Cidara, Gilead, Menarini, MSD, Pfizer, and Shionogi, outside of the submitted work. AF Das: consulting fees from Cidara, Gilead, Menarini, MSD, Pfizer, and Shionogi, outside of the submitted work. AF Das: consulting fees from Cidara, Gilead, Menarini, MSD, Pfizer, and Shionogi, outside of the submitted work. advisory board membership for F2G, outside of the submitted work. **T Sandison:** employee of and stocks in Cidara. All other authors declare no competing interests.

References

1. Dekkers BGJ, et al. Drugs Aging. 2018;35(9):781–789; 2. Thompson GR, et al. Clin Infect Dis. 2020 :ciaa1380; 3. Thompson GR, et al. Lancet. 2022 Nov 25:S0140-6736(22)02324-8.

Funding

ReSTORE trial: co-funded by Cidara Therapeutics and Mundipharma. STRIVE study: Cidara Therapeutics were involved in trial design execution, and data analysis. Cidara Therapeutics and Mundipharma were involved in trial reporting.

Acknowledgements

Medical writing services were provided by Rebecca Down at Copperfox Communications Ltd.

