

In Vivo Efficacy of CD388 Against Seasonal Influenza in Prophylaxis in Immune Competent Mice, and in a Severe Immunodeficient (SCID) Mouse Model

James Levin, PhD IDWeek 2023

Disclosures

Employee and shareholder of Cidara Therapeutics

A universal influenza prophylactic agent does not yet exist

From the 2018-2019 flu season (USA)

35.5 million Sick

16.5 millionSeek HCP care

490,600 Hospitalizations

34,200 Deaths

Source: CDC, WHO

Significant healthcare burden and mortality

Significant limitations with existing flu therapeutics

Need for long-acting flu prevention with potent, universal activity

Vaccines Limited VE

Monoclonal Abs

Type specific

Small molecules
Limited prophylaxis

Drug Fc-Conjugates (DFCs) are a novel modality for prevention of Influenza

CD388

hlgG1 Fc fragment

The DFC platform is tunable and modular

- The inhibitor is a potent, broad spectrum small molecule NA inhibitor
- > The NAI is connected to the Fc fragment by a stable, noncleavable linker
- > NAI to Fc ratio is tunable for efficacy and physical properties
- > Modified Fc to extend half-life
- Multivalent presentation of inhibitor allows for retention of activity against NAI-resistant isolates

CD388 outperforms approved small molecule antivirals in CPE assays

Assay: In vitro cell-based assay measuring test article ability to inhibit virus induced CPE*

Influenza subtype	CD388 Median EC ₅₀ [nM] (EC ₅₀ [nM] range)	Oseltamivir Median EC ₅₀ [nM] (EC ₅₀ [nM] range)	Zanamivir Median EC ₅₀ [nM] (EC ₅₀ [nM] range)	Baloxavir Median EC ₅₀ [nM] (EC ₅₀ [nM] range)
A/H1N1 (n=16)	0.80 (0.01 to 11.25)	185.3 (29.39 to >10,000)	128.5 (17.22 to 7482)	1.44 (0.11 to 26.55)
A/H3N2 (n=15)	1.27 (0.03 to 8.53)	1166 (2.58 to >10,000)	2160 (3.06 to >10,000)	1.62 (<0.00001 to 8.92)
B (n=13)	1.72 (0.03 to 8.71)	1483 (151.9 to >10,000)	401.1 (31.9 to 2991)	9.99 (0.12 to 40.82)

CD388 demonstrates superiority to oseltamivir and zanamivir; on par with baloxavir

CD388 is a potent antiviral that covers NAI resistant strains

Assay: in vitro cleavage of a neuraminidase substrate by virus in the presence of test articles

Influenza subtype	CD388 Median IC ₅₀ [nM] (IC ₅₀ [nM] range)	Zanamivir Median IC ₅₀ [nM] (IC ₅₀ [nM] range)	Oseltamivir Median IC ₅₀ [nM] (IC ₅₀ [nM] range)
H275Y A/Alabama/03/2020 (H1N1)pdm09	0.98	0.16	426.80
H134N B/Laos/0080/2016	4.66	310.80	171.80

CD388 retains activity against clinically relevant neuraminidase variants

(CDC NAI Susceptibility Reference Panel; version 2/3)

CD388 mouse efficacy screening models - prevention

Additional in vivo studies:

BALB/c, SCID, Tg32, and Fcer1g-/- mice Dose schedules (T-7d to T+72h) Additional readouts:

Cytokine profile Lung burden

In vitro potency translates to efficacy in lethal challenge models

Model: T-7d prophylaxis against H1N1 (single dose)

Day post infection

→ CD388 (0.03 mg/kg)

hlgG1 Fc (1 mg/kg)

Vehicle (PBS)

Minimal body weight reduction with low doses of CD388

Model: T-7d prophylaxis against H1N1 (single dose)

CD388 is a potent antiviral in both prevention and treatment models

Prevention (T-7d)

Treatment (T+2h)

Subtype	Number of isolates tested	Fully protective dose required for complete subtype coverage (mg/kg)
A (H1N1)	7	1
A (H3N2)	1	0.3
B (Victoria)	2	1
B (Yamagata)	1	0.3

Subtype	Number of isolates tested	Fully protective dose required for complete subtype coverage (mg/kg)
A (H1N1)	8	1
A (H3N2)	1	0.3
B (Victoria)	2	0.3
B (Yamagata)	1	0.3

> 1 mg/kg fully protective @ T+72h in a delayed treatment model

- **❖** A single dose of CD388 at 1 mg/kg is fully protective against lethal challenge by seasonal isolates
- * This includes H275Y and H134N isolates resistant to oseltamivir and zanamivir, respectively

CD388 is more active than approved drugs in an immune-compromised model

Model: <u>Severe Combined Immunodeficient (SCID)</u> - Mice lacking B and T lymphocytes

Dosing (n=5/group):

Oseltamivir (5 mg/kg, bid x5d) Baloxavir (15 mg/kg, bid x1d) CD388 (1, 3, & 10 mg/kg, single)

Test article	Median time of death (d)
Vehicle	7
Oseltamivir	10
Baloxavir	16
CD388	>21

CD388 achieves prolonged protection in a murine SCID model

Model: <u>Severe Combined Immunodeficient (SCID)</u> - Mice lacking B and T lymphocytes

Day Post Infection

Test article	Median time of death (d)
Vehicle	7
Oseltamivir	10
Baloxavir	16
CD388 (1 mg/kg)	26
CD388 (3 mg/kg)	30
CD388 (10 mg/kg)	35

CD388 has a low resistance potential and is active at low [plasma]

- ❖ No significant change in CD388 susceptibility over time in this model
- * Re-emergence of infection when plasma levels drop below ~0.2 μg/mL (0.091 0.171)

CD388 is a potent antiviral superior to existing therapeutic options

CD388

CD388 demonstrates:

- > Exceptional activity against seasonal influenza in prevention and treatment models
- > Activity against naturally occurring neuraminidase variants

- > Superior protection in an immune-deficient model of influenza
- > A low resistance potential and activity at low plasma concentrations

Acknowledgements - Preclinical development of CD388

Cidara Therapeutics

Les Tari (CSO) and the rest of the management team

Department of Chemistry

Department of Protein Chemistry

Department of Microbiology

Department of Immunology

Department of Preclinical Development

The team at Janssen Pharmaceuticals

External Collaborators

Stacey Schultz-Cherry, PhD (St. Jude's)

Sumit Chanda, PhD (TSRI)

Laura Martin-Sancho, PhD (Imperial College)

Paul DeJesus (TSRI)

Efficacy of CD388, a Novel Drug Fc-Conjugate (DFC), is Driven by the Small Molecule Neuraminidase Inhibitor (NAI)

Simon Döhrmann, PhD

Session Title: Antimicrobial Novel Agents Session Date: Saturday October 14, 2023

Session Time: 12:15 PM - 1:30 PM Session Location: BCEC Poster Hall

Single Ascending Dose Safety, Tolerability, and Pharmacokinetics of Subcutaneous and Intramuscular CD388, a Novel Long-acting Drug-Fc Conjugate for Universal Prevention of Seasonal and Pandemic Influenza

Shawn Flanagan, PhD

Session Title: New Antimicrobial Drug Development

Session Date: Saturday, October 14, 2023

Session Time: 12:15 PM - 1:30 PM

Session Location: Hall B + C

