

CD388 Demonstrates a High Barrier to Resistance and Retains Potent Activity against NAI^R Influenza A and B Variants

Simon Döhrmann, PhD

ISIRV Conference in Seattle

Disclosures

Current employee and stockholder of Cidara Therapeutics, Inc.

Influenza Causes Unacceptable High Levels of Disease Burden

LIMITED COVERAGE

Unmet Need for Long-Acting, Universal Agent for Influenza Prevention

Unmet Need for Long-Acting, Universal Agent for Influenza Prevention

CD388 is in Clinical Development* for the Prevention of Influenza

CD388 development under exclusive, worldwide license with Janssen Pharmaceutical

Multivalent presentation of a novel, dimeric NAI

Fc fragment is engineered for PK extension

Why Was a NAI Selected for the Design of CD388?

- NA is essential for viral replication cycle
- Positive correlation of anti-NA titers with protection against influenza¹
- Low frequency of NAI^R variants observed clinically (<1%)²
- NA has a highly conserved active-site across influenza A and B that Small molecule NAIs specifically target ('universal coverage')

¹ Maier et al. Pre-existing Ant-ineuraminidase Antibodies Are Associated With Shortened Duration of Influenza A(H1N1)pdm Virus Shedding and Illness in Naturally Infected Adults. Clin Infect Dis. 2020 May 23;70(11):2290-2297. PMID: 31300819; PMCID: PMC7245146; Memoli et al. Evaluation of Antihemagglutinin and anti-NA Antibodies as Correlates of Protection in an Influenza A/H1N1 Virus Healthy Human Challenge Model PMID: 27094330 2 Govorkova et al. Global update on the susceptibilities of human influenza viruses to neuraminidase inhibitors and the cap-dependent endonuclease inhibitor baloxavir, 2018-2020. Antiviral Res. 2022 Apr;200:105281. Epub 2022 Mar 12. PMID: 35292289; PMCID: PMC9254721.

CD388 is Differentiated from Small Molecule NAIs and Demonstrates Universal Activity against Influenza A and B

Cell-Based Cytopathic Effect Assays

CD388 is Differentiated from Small Molecule NAIs and Demonstrates Universal Activity against Influenza A and B

Cell-Based Cytopathic Effect Assays

CD388 administered as a single dose at 1 mg/kg or lower conferred full protection against numerous NAI-sensitive influenza A and B viruses in lethal mouse models

What is the Resistance Potential of CD388?

CD388 Serial Passage Methodologies: Static, sub-inhibitory and dose-escalating

CD388-Selected Variants Were Identified at Position 246 in NA

ZAN interaction with NA from A/H1N1

CD388-Selected Variants Remain Susceptible to CD388

Cross-resistance in Cell-Based Plaque Reduction Assays

Influenza virus	NA	CD388		OST		ZAN	
	geno- type	EC ₅₀ [nM]	Fold- change	EC ₅₀ [nM]	Fold- change	EC ₅₀ [nM]	Fold- change
A/WSN/1933 (H1N1), p0	S246 ¹	0.09		80.1		6.88	
A/WSN/1933 (H1N1), p10	S246R	0.23	2.6	50.0	0.6	9.77	1.5
A/Victoria/3/75 (H3N2), p0	A246	1.65		1.80		6.09	
A/Victoria/3/75 (H3N2), p10	A246V	4.58	2.8	9.02	5	58.7	11

Is CD388 Active against NAIR Variants?

NA inhibition Assays

CD388 Retains Potency against NAI^R Variants

NA Inhibition Assays

Influenza virus	NA	CD388		OST		ZAN	
	geno-	IC ₅₀	Fold-	IC ₅₀	Fold-	IC ₅₀	Fold-
	type	[nM]	change	[nM]	change	[nM]	change
A/Illinois/45/2019 (H1N1)	H275	1.30		0.33		0.19	
A/Alabama/03/2020 (H1N1)	H275Y	0.98	1	426.8	1304	0.16	1
B/Laos/0080/2016	H134	7.44		33.35		2.61	
B/Laos/0654/2016	H134N	4.66	1	171.8	5	310.8	119

ZAN is Protective against ZANS Strain in Lethal Mouse Model

ZAN dosed IN starting t+2h post-infection (QD x 5)

ZAN has 10x Reduced Efficacy against a ZAN^R Variant in Lethal Mouse Model

ZAN dosed IN starting t+2h post-infection (QD x 5)

CD388 Demonstrates Efficacy with Single, Low Dose against ZAN^S Strain in Lethal Mouse Model

Single IM dose at t+2h post-infection

CD388 Demonstrates Unchanged Efficacy against a ZAN^R Variant in Lethal Mouse Model

Single IM dose at t+2h post-infection

CD388 Demonstrates Unchanged Efficacy against ZAN^R Variant in Lethal Mouse Model

Single IM dose at t+2h post-infection

Summary

- CD388 demonstrates universal activity against influenza A and B
- CD388 demonstrates a high-barrier to resistance in serial passage experiments and retains potency against CD388-selected variants
- CD388 retains potent activity against the CDC panel of NAI^R influenza variants
- CD388 protective doses in lethal mouse models are identical against NAI^S and NAI^R influenza variants

PRESS RELEASES

CIDARA THERAPEUTICS ANNOUNCES PROMISING INTERIM PHASE 2A DATA ASSESSING THE SAFETY AND EFFICACY OF A SINGLE DOSE OF CD388 IN AN INFLUENZA CHALLENGE MODEL

March 1, 2023

- A single dose of CD388 decreased influenza viral replication in the upper respiratory tract and lowered influenza incidence rate in a human challenge model when compared to placebo
- CD388 was generally safe and well tolerated with no adverse events related to study drug reported as of the February 13, 2023 data cut-off
- Ongoing study being conducted in collaboration with Janssen

SAN DIEGO, March 01, 2023 — Cidara Therapeutics, Inc. (NASDAQ: CDTX), a biotechnology company developing longacting therapeutics designed to help improve the standard of care for patients facing serious diseases, today announced promising efficacy and safety data from a planned interim analysis of the ongoing Phase 2a trial evaluating

Acknowledgements

Cidara Team:

- Les Tari, PhD
- James Levin, PhD
- Jason N. Cole, PhD
- Allen Borchardt, PhD
- Karin Amundson
- Amanda Almaguer
- Elizabeth Abelovski
- Rajvir Grewal
- Douglas Zuill
- Nicholas Dedeic
- Grayson Hough
- Joanne Frontier
- Joanna Donatelli
- Thanh Lam, PhD
- Zhi-Yong Chen, PhD
- Wanlong Jiang, PhD

- Travis Haussener, PhD
- Alain Noncovich, PhD
- James M. Balkovec, PhD
- Daniel C. Bensen
- Voon Ong, PhD
- Thomas P. Brady, PhD
- Jeffrey Locke, PhD
- Jeffrey L. Stein, PhD

Janssen Pharmaceuticals Team

External Collaborators:

- Stacey Schultz-Cherry, PhD (St. Jude's)
- Sumit Chanda, PhD (TSRI)
- Laura Martin-Sancho, PhD (Imperial College)
- Paul DeJesus (TSRI)

