CD388, a Drug Fc-Conjugate, shows long half-life in early clinical studies

Ruben Faelens¹, Tristan Baguet¹, Shawn Flanagan², Jorge Villacian¹

Johnson and Johnson, Innovative Medicine R&D-Infectious Diseases and Vaccines, Turnhoutseweg 30, B-2340 Beerse, Belgium; 2Cidara Therapeutics, 6310 Nancy Ridge Drive, Suite 101, San Diego, CA 92121, USA

Abstract

Background: CD388 is a multivalent conjugate of a dimeric neuraminidase inhibitor, with an engineered (mutated) hlgG1 Fc domain for extended half-life. The drug is being developed in collaboration with Cidara Therapeutics for the seasonal prevention of both influenza A and B.

Currently, available options for influenza protection include drugs with short half-lives or vaccines that offer variable protection and depend on a properly functioning immune system. CD388 offers convenience due to its extended halflife, allowing for long-lasting prophylactic concentrations. It also works independently from the immune system, which makes it particularly beneficial for patients who may have a lower response to vaccines.

Methods: A Phase 1 single ascending dose (SAD) study is being conducted in healthy volunteers evaluating safety, tolerability and pharmacokinetics of 4 dose levels of subcutaneous (SC) and intramuscular (IM) CD388. Preliminary results from the SAD were analysed through non-linear mixed effects modelling. Results: A total of 66 healthy volunteers dosed on placebo (N=3 per cohort) or CD388 (N=8 per cohort, at 50 mg, 150 mg, or 450 mg SC and IM) were included in an interim analysis. CD388 concentrations were sampled in plasma and quantified using a hybrid LCMS method with a polyclonal antibody to CD388, with low cross-reactivity to human Fc alone. The observed PK was adequately described by a linear onecompartment disposition model with first-order absorption. Half-life was 6-8 weeks.

All participants were predicted to reach 90% of $C_{\text{max}}\,\text{at}\,\text{day}\,5$ post-administration. Model predicted plasma concentrations for a single dose of 150 mg given or 300 mg on Day 1 show slow concentration peak to trough decline of approximately 1 Log over flu season (6 months), whereas giving a 2nd 150 mg dose mid flu season leads to accumulation and reduced peak to trough ratio.

Conclusions: CD388 showed an extended half-life of 6 to 8 weeks, which could provide seasonal prevention with one or two doses per season.

Objectives

- To identify the typical half-life of CD388 through non-linear mixed effects modeling
- To predict the CD388 absorption profile, informing the time of viral challenge in a Human Challenge Study (HCS)
- To predict the CD388 150mg concentration at 6-months post-dose, and the dose yielding these concentrations at day 5 post-administration- informing the projected concentrations at the time of the viral challenge in the HCS and the potential for achieving prophylactic concentrations at the end of an influenza season
- To predict the 6-month post-dose concentration in a future patient population for doses of 300mg or 150mg+150mg.

Available data

Table 1. Overview of available data

Dose	Route	N of Participants	#PK samples	#PK samples <lloq*< th=""><th>Last available sample (day)</th></lloq*<>	Last available sample (day)
50 mg	SC	8	144	4	120
150 mg	SC	8	137	1	120
450 mg	SC	8	112	0	30

*: Lower limit of quantification (LLOO) of 0.1 ug/mL

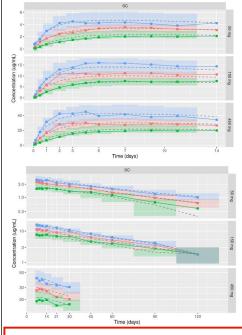
Model development

A base model was developed as an open linear 1-compartment disposition model with first-order absorption. The model was parameterized in terms of apparent clearance and volume of distribution, as well as absorption rate constant, Inter-individual variability was described using an exponential error model, and it accounted for the correlation between apparent clearance and central volume. Residual error was characterized using a combined proportional + additive error.

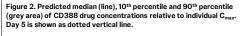
The final model was evaluated using goodness-of-fit plots, visual predictive checks (VPC per dose group) and predictioncorrected VPC using 2000 replicates.

Model development (cont.)

Table 2. Parameter Estimates in Final Population


Pharmacokinetic Model

Parameters	Population Estimate	RSE (%)	Shrinkage (%)			
K _a (/h)	0.02493	10.53	N.A.			
CL/F (L/h)	0.00826	4.74	N.A.			
equivalent T _{1/2} (days) ^a	45.91					
V _c /F (L)	13.13	5.66	N.A.			
IIV of K _a (CV%)	54	11.81	1.3			
IIV of CL (CV%)	19.4	14.69	9.8			
IIV of V _c (CV%)	27.6	14.05	0.51			
Correlation between IIV of CL and $\rm V_{c}$	0.6218	20.32	N.A.			
Proportional residual error (CV%)	7.96	12.79	7.9			
Additive residual error (µg/mL)	0.3109	20.22	1.9			
RSE: relative standard error; CL: clearance; V _c : central volume of distribution; IIV: inter- individual variability, estimates in CV% calculated as explorations. 1) ^{1/2} and RSE calculated as						


(std error/variance)/2. $\theta_{T_{1/2}} = \log(2) * \frac{\theta_{V_c}}{\theta_{cu}}$

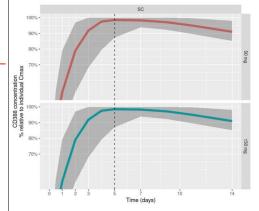
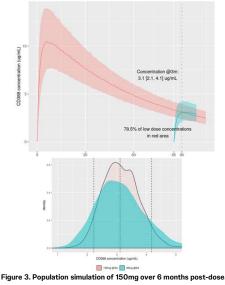
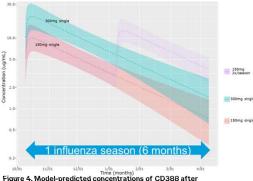

Simulation of absorption profile

Figure 1. Visual Predictive Check (VPC) of the final CD388 popPK model in study CD388.SQ.1.01. Upper plot shows absorption during first 14 days post-dose, lower plot shows full profile without first 7 days (log-scale). Red shows median, blue and green show 80% prediction interval, areas show 90% confidence interval.


Typical half-life was estimated at 6 – 8 weeks


At day 5 post-administration, 90% of the population is predicted to reach 90% of \mathbf{C}_{\max} . This confirms day 5 post-administration is an appropriate time for viral challenge in a Human Challenge Study.

A dose of 45mg is predicted to yield day 5 concentrations equivalent to concentrations achieved at 3 months after a 150mg dose

Predicted concentrations over an influenza season

Time (months) for CD388 after Figure 4. Model-predicted conc administration of 300 mg 1x/season, 150 mg 1x/season and 150 mg 2x/season doses

A dose of 300mg provided a 10-fold peak-to-trough ratio over 6 months influenza season. A regimen of 150mg every 3 months is predicted to yield lower peak-to-trough variation and higher final trough concentrations.

Conclusions

- A single dose of 300 mg CD388 was predicted to show slow concentration peak to trough decline of approximately 10 fold over a potential influenza season.
- □ An initial 150mg dose amended with a 2nd 150 mg dose midinfluenza season leads to accumulation and reduced peak to trough variation.
- The extended half-life of CD388 could provide seasonal prevention with one or two doses per season.
- □ At the projected doses_CD388 concentrations would be at adequate levels on Day 5 post-administration in order to perform a proof-of-concept viral Human Challenge Study.

References

- CDC Seasonal Flu Vaccine Effectiveness. <u>https://www.cdc.gov/flu/vaccines-work/effectiveness-studies.htm</u> Hughes et al. Clinical Infectious Diseases. 2021 Dec 6;73(11):e4353-e4360. doi: 10.1093/cid/cias1927.